Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Tareena Billabong – a palaeolimnological history of an ever-changing wetland, Chowilla Floodplain, lower Murray–Darling Basin, Australia

Peter A. Gell A D , Sorell Bulpin A , Peter Wallbrink B , Gary Hancock B and Sophie Bickford C
+ Author Affiliations
- Author Affiliations

A Geographical & Environmental Studies, University of Adelaide, SA, 5005, Australia.

B CSIRO Land and Water, Canberra, ACT, 2601, Australia.

C CSIRO Plant Industry, Canberra, ACT, 2601, Australia.

D Corresponding author. Email: peter.gell@adelaide.edu.au

Marine and Freshwater Research 56(4) 441-456 https://doi.org/10.1071/MF04107
Submitted: 25 May 2004  Accepted: 31 March 2005   Published: 27 June 2005

Abstract

A 427-cm sediment core was extracted from Tareena Billabong, a Murray River floodplain wetland in the extreme south-west of New South Wales, Australia. Analysis of fossil diatoms and pollen, sediment 210Pb and 137Cs profiles and radiocarbon and luminescence dating reveal that Tareena Billabong has undergone substantial environmental change in its ~5000-year history. Shortly after its formation, the billabong was a freshwater lagoon with a diatom flora dominated by Synedra ulna and Planothidium lanceolatum. An increase in Aulacoseira granulata, a river plankton dominant today, reflects two phases of increased connectivity with the Murray River in the mid to late Holocene. A shift to lagoonal taxa after ~3000 years BP is attributed to water balance and river-flow changes, possibly associated with regional climate change. Importantly, it appears to have undergone an extended phase of increasing turbidity, and possibly wetland salinity, commencing ~3000 years BP. Sedimentation increased at least 15-fold in the European phase. Billabong salinity increased markedly soon after European settlement, reaching a peak in the late 1800s AD. While regulation then increased the degree of connection between the billabong with the River in the 1920s AD, salinity levels remained high. Increased salinity is revealed by increases in the diatom taxa Amphora spp., Cyclotella meneghiniana, Gyrosigma acuminatum, Planothidium delicatulum and Tryblionella hungarica and by declines in Casuarinaceae, Eucalyptus, Myriophyllum and Cyperaceae pollen. Tareena Billabong was subjected to considerable environmental pressures from the early stages of European settlement in terms of sediment load, hydrological change and salinity.

Extra keywords: diatoms, lead-210, river regulation, salinisation, sedimentation rates.


Acknowledgments

Den, Belinda and Paul Hansen provided support, advice and access to their personal collection. Jeannette Hope provided guidance. Chris Grivell prepared samples for diatom and pollen enumeration. Sue Murray drafted Fig. 1. Chris Crothers drafted Fig. 8. John Prescott, Gillian Robertson, John Tibby and Martin Williams and four anonymous reviewers provided valuable comments on the manuscript. Gillian Robertson and the Archaeometry Research Group of the University of Adelaide are thanked for the provision of luminescence ages. This project was supported by a University of Adelaide small grant to PG.


References

Appleby, P. G. , and Oldfield, F. (1983). The assessment of 210Pb data from sites of varying accumulation rates. Hydrobiologia 103, 29–35.
Crossref | GoogleScholarGoogle Scholar | Battarbee R. W. (1986). Diatom analysis. In ‘The Handbook of Holocene Palaeoecology and Palaeohydrology’. (Ed. B. E. Berglund.) pp. 527–570. (John Wiley: Chichester.)

Battarbee R. W., Jones V. J., Flower R. J., Cameron N. G., Bennion H., Carvalho L., and Juggins S. (2001). Diatoms. In ‘Tracking Environmental Change Using Lake Sediments Volume 3: Terrestrial, Algal, and Siliceous Indicators’. (Eds J. P. Smol, J. B. Birks and W. M. Last.) pp. 155–202. (Kluwer: Dordrecht.)

Bowler, J. M. (1981). Australian salt lakes, a palaeohydrologic approach. Hydrobiologia 81–82, 431–444.
Crossref | GoogleScholarGoogle Scholar | Boyd W. E. (1992). ‘A Pollen Flora of the Native Plants of South Australia and Southern Northern Territory, Australia.’ (Royal Geographical Society of Australasia (S.A. Branch): Adelaide.)

Callender, E. , and Robbins, J. A. (1993). Transport and accumulation of radionucliudes and stable elements in a Missouri River Reservoir. Water Resources Research 29, 1787–1804.
Crossref | GoogleScholarGoogle Scholar | Eastburn D. (1990). ‘The River Murray: History at a Glance.’ (Murray–Darling Basin Commission: Canberra.)

Faegri K., and Iverson J. (1964). ‘Textbook of Pollen Analysis.’ (Munskgaard: Copenhagen.)

Fluin J. (2002). A diatom-based palaeolimnological investigation of the Lower Murray River (south-east Australia). Ph.D. Thesis, Monash University, Melbourne.

Fourtanier, E. , and Kociolek, P. (1999). Catalogue of the diatom genera. Diatom Research 14, 1–190.
Gell P. A. (1995). The development and application of a diatom calibration set for lake salinity, western Victoria, Australia. Ph.D. Thesis, Monash University, Melbourne.

Gell, P. A. (1997). The development of a diatom-based database for inferring lake salinity, western Victoria, Australia: towards a quantitative approach for reconstructing past Australian climates. Australian Journal of Botany 45, 389–423.
Crossref | GoogleScholarGoogle Scholar | Grimm E. C. (1992). ‘TILIA Version 1.12.’ (Illinois State Museum: Springfield, IL.)

Hancock G. (1994). The effect of salinity of the concentrations of radium and thorium in sediments. M.Sc. Thesis, Australian National University, Canberra.

Hancock, G. J. , and Murray, A. S. (1996). The source and distribution of dissolved radium in the Bega River estuary, southeastern Australia. Earth and Planetary Science Letters 138, 145–155.
Crossref | GoogleScholarGoogle Scholar | Hillman T. J. (1986). Billabongs. In ‘Limnology in Australia’. (Eds P. DeDeckker and W. D. Williams.) pp. 457–470. (CSIRO Publishing: Melbourne.)

Jones, R. N. , McMahon, T. A. , and Bowler, J. M. (2001). Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c. 1840–1990). Journal of Hydrology 246, 159–180.
Crossref | GoogleScholarGoogle Scholar | Krammer K., and Lange-Bertalot H. (1986). ‘Susswasserflora von Mitteleuropa. Bacillariophyceae, Teil i: Naviculaceae.’ (Gustav Fischer Verlag: Stuttgart.)

Krammer K., and Lange-Bertalot H. (1988). ‘Susswasserflora von Mitteleuropa. Bacillariophyceae Teil ii: Bacillariaceae, Epithemiaceae, Surirellaceae.’ (Gustav Fischer Verlag: Stuttgart.)

Krammer K., and Lange-Bertalot H. (1991a). ‘Susswasserflora von Mitteleuropa. Bacillariophyceae Teil iii: Centrales, Fragilariaceae, Eunotiaceae.’ (Gustav Fischer Verlag: Stuttgart.)

Krammer K., and Lange-Bertalot H. (1991b). ‘Susswasserflora von Mitteleuropa. Bacillariophyceae Teil iv: Achnanthaceae.’ (Gustav Fischer Verlag: Stuttgart.)

Li, Y.-H. , and Chan, L. H. (1979). Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary. Earth and Planetary Science Letters 43, 343–350.
Crossref | GoogleScholarGoogle Scholar | Martin P., and Hancock G. J. (1992). Routine analysis of naturally occurring radionuclides in environmental samples by alpha-particle spectrometry. Research Report 7, Supervising Scientist for the Alligator Rivers Region, Canberra.

Murray, A. S. , and Wintle, A. G. (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 57–73.
Crossref | GoogleScholarGoogle Scholar | Olley J. M., Murray A. S., Wallbrink P. J., Caitcheon G. G., and Stanton R. (1990). The use of fallout nuclides as chronometers. In ‘Proceedings of the Quaternary Dating workshop, August 1990, Australian National University, Canberra’. (Ed. R. Gillespie.) pp. 51–55. (Australian National University, Canberra.)

Olley, J. M. , Murray, A. S. , Mackenzie, D. , and Edwards, K. (1993). Identifying sediment sources in a gullied catchment using natural and anthropogenic radioactivity. Water Resources Research 29, 1037–1043.
Crossref | GoogleScholarGoogle Scholar | Parsons W. T., and Cuthbertson E. G. (2001). ‘Noxious Weeds of Australia.’ (CSIRO Publishing: Melbourne.)

Radke L. (2000). Solute divides and chemical facies in southeastern Australian salt lakes and the response of ostracods in time and space. Ph.D. Thesis, Australian National University, Canberra.

Reid, M. A. , Tibby, J. C. , Penny, D. , and Gell, P. A. (1995). The use of diatoms to assess past and present water quality. Australian Journal of Ecology 20, 57–64.
Robbins J. A. (1978). Geochemical and geophysical applications of radioactive lead. In ‘The Biogeochemistry of Lead in the Environment. Part A’. (Ed. J. O. Nriagu.) pp. 285–393. (Elsevier Scientific: Amsterdam.)

Schumm S. A. (1968). River adjustment to altered hydrologic regimen – Murrumbidgee River and palaeochannels, Australia. U.S. Geological Survey Professional Paper 598.

Singh, G. (1981). Late Quaternary pollen records and seasonal palaeoclimates at Lake Frome, South Australia. Hydrobiologia 81–82, 419–430.
Crossref | GoogleScholarGoogle Scholar | Sonneman J. A., Sincock A., Fluin J., Reid M., Newall P., Tibby J., and Gell P. (2000). An illustrated guide to common stream diatom species from temperate Australia. Identification Guide No. 33, Cooperative Research Centre for Freshwater Ecology.

Van Dam, H. , Mertens, A. , and Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28, 117–133.
Williams M., Dunkerley D., DeDeckker P., Kershaw P., and Chappell J. (1998). ‘Quaternary Environments.’ 2nd edn. (Arnold: London.)





Appendix 1.  Simple weighted averaging optima for salinity and pH of diatom taxa in Fig. 5 and included in the transfer function of Gell (1995, 1997, unpublished data)
A1