Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Dynamics of extracellular enzymatic activities in a shallow Mediterranean ecosystem (Tindari ponds, Sicily)

G. Caruso A B , L. Monticelli A , F. Azzaro A , M. Azzaro A , F. Decembrini A , R. La Ferla A , M. Leonardi A and R. Zaccone A
+ Author Affiliations
- Author Affiliations

A Institute for the Marine Coastal Environment (IAMC) – Section of Messina, National Research Council, 98122 Messina, Italy.

B Corresponding author. Email: gabriella.caruso@iamc.cnr.it

Marine and Freshwater Research 56(2) 173-188 https://doi.org/10.1071/MF04049
Submitted: 17 March 2004  Accepted: 8 February 2005   Published: 12 April 2005

Abstract

Three microbial extracellular enzymes, leucine aminopeptidase (LAP), β-glucosidase (β-glu) and alkaline phosphatase (AP), were studied in six small Mediterranean littoral ponds, to evaluate the diversity of microbial activities relative to prevailing environmental conditions. The marked diversification of the trophic states, ranging from oligotrophy to eutrophy, in the ponds was reflected in a range of enzyme patterns at different spatial and temporal scales. There were higher levels and greater variability of microbial activity in the oldest and most ‘confined’ ponds (ranges: 0.55–4360.00 nm h−1, 0.15–76.44 nm h−1, 1.29–1600.00 nm h−1 for LAP, β-glu and AP respectively) compared with the youngest and most seaward ponds (ranges: 22.64–612.0 nm h−1, 0.06–48.89 nm h−1, 0.32–744.0 nm h−1 for LAP, β-glu and AP respectively). The close relationship of the degradative potential with chlorophyll-a and particulate organic carbon could be a consequence of the stimulating effect of phytoplankton-released polymeric compounds (organic matter) and/or a response of the microbial community to warm temperatures, which were recorded from July to September. Within an area less than 1 km2, different aquatic ecosystems coexist and maintain their distinctive properties in terms of microbial biogeochemical processes.

Extra keywords: carbon cycle, microbial enzymes, phosphorus cycle, shallow waters.


Acknowledgments

The authors wish to thank Professor H.-G. Hoppe (Institut fur Meereskunde, Kiel, Germany) for the critical revision of this paper and for stimulating suggestions that greatly improved this manuscript.


References

APHA (1992). ‘Standard Methods for the Examination of Water and Wastewater.’ 18th edn. (American Public Health Association, Inc: Washington, DC.)

Aminot A., and Chaussepied M. (1983). ‘Manuel d’analyses chimiques en milieu marin.’ (Centre National pour l’Exploration des Oceans: Brest, France.)

Ammerman, J. W. , and Azam, F. (1991). Bacterial 5′-Nucleotidase activity in estuarine and coastal marine waters – Characterization of enzyme activity. Limnology and Oceanography 36, 1427–1436.
Azzaro F. (1995). Osservazioni biennali sull’ecosistema degli stagni costieri di Oliveri-Tindari (Messina): nutrienti e clorofilla a. In ‘Atti del VI Congresso della Società Italiana di Ecologia, Venezia’. (Eds O. Ravera and A. Anelli.) pp. 495–497. (Società Italiana di Ecologia: Parma, Italy.)

Bianchi, A. , and Giuliano, L. (1996). Enumeration of viable bacteria in the marine pelagic environment. Applied and Environmental Microbiology 62, 174–177.
Chrost R. J. (1991). Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In ‘Microbial Enzymes in Aquatic Environments’. (Ed. R. J. Chrost.) pp. 29–59. (Springer-Verlag: New York.)

Chrost, R. J. , and Overbeck, J. (1987). Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in lake Plubsee (North German eutrophic lake). Microbial Ecology 13, 229–248.
Duchlow H. W., and Carlson C. A. (1992). Oceanic bacterial production. In ‘Advances in Microbial Ecology. Vol. 12’. (Ed. K. C. Marshall.) pp. 113–181. (Plenum Press: New York.)

Fuhrman J. A. (1992). Bacterioplankton roles in cycling of organic matter: the microbial food web. In ‘Primary Productivity and Biogeochemical Cycles in the Sea’. (Eds P. G. Falkowski and A. D. Woodhead.) pp. 361–383. (Plenum Press: New York.)

Genovese S., and Magazzú G. (1969). ‘Manuale d’analisi per le acque salmastre.’ (Editrice Universitaria: Messina.)

Giacobbe, S. , Leonardi, M. , Azzaro, F. , and Rinelli, P. (1990). Descrizione di un esempio di “confinamento”: l’area lagunare di Oliveri-Tindari (Messina). Oebalia XVI-II, 675–678.Supplemento
Haglund A.-L. (2004). Attached bacterial communities in lakes- habitat-specific differences. In ‘Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1029’. pp. 1–35. (Acta Universitatis Upsaliensis: Uppsala.)

Hoppe, H. G. (1983). Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Marine Ecology Progress Series 11, 299–308.
Hoppe H. G. (1986). Relations between bacterial extracellular enzyme activities and heterotrophic substrate uptake in a brackish water environment. In ‘Proceedings of the 2ème GERBAM – CNRS Colloque International de Bactériologie marine, Brest’. pp. 119–128. (IFREMER: Plouzané, France.)

Hoppe, H. G. , Gocke, K. , Zamorano, D. , and Zimmermann, R. (1983). Degradation of macromolecular organic compounds in a tropical lagoon (Cienaga Grande, Colombia) and its ecological significance. Internationale Revue Der Gesamten Hydrobiologie 68, 811–824.
Hoppe H. G., Gocke K., and Alcantara F. (1996). Shifts between autotrophic and heterotrophic processes in a tidal lagoon (Ria de Aveiro, Portugal). In ‘Special Issue: Advances In Limnology’. Archiv Für Hydrobiologie 48, 39–52.

Hoppe, H. G. , Giesenhagen, H. C. , and Gocke, K. (1998). Changing patterns of bacterial substrate decomposition in a eutrophication gradient. Aquatic Microbial Ecology 15, 1–13.
Hoppe H. G., Arnosti C., and Herndl G. F. (2002). Ecological significance of bacterial enzymes in the marine environment. In ‘Enzymes in the Environment: Activity, Ecology, and Applications’. (Eds R. G. Burns and R. P. Dick.) pp. 73–107. (Marcel Dekker: Basel, Switzerland.)

Iseki K., MacDonald R. W., and Carmack E. (1987). Distribution of particulate matter in the south-eastern Beaufort Sea in late summer. In ‘Proceedings NIPR Symposium Polar Biology’. pp. 35–46.

Jones R. D. (1997). Phosphorus cycling. In ‘Manual of Environmental Microbiology’. (Ed. C. J. Hurst.) pp. 343–348. (ASM Press: Washington, DC.)

Karner, M. , and Rassoulzadegan, F. (1995). Extracellular enzyme activity: indicators for high short-term variability in a coastal marine ecosystem. Microbial Ecology 30, 143–156.
La Ferla R., Zaccone R., Caruso G., and Azzaro M. (2001). Enzymatic activities and carbon flux through the microbial compartment in the Adriatic Sea. In ‘Mediterranean Ecosystems: Structures and Processes’. (Eds F. M. Faranda, L. Guglielmo and G. Spezie.) pp. 485–493. (Springer-Verlag Italia: Milano.)

La Ferla, R. , Azzaro, M. , Zaccone, R. , and Caruso, G. (2002). Microbial respiratory and ectoenzymatic activities in the Northern Adriatic Sea (Mediterranean Sea). Chemistry and Ecology 18(1–2), 75–84.
Crossref | GoogleScholarGoogle Scholar | La Ferla R., Azzaro F., Azzaro M., Caruso G., Decembrini F., Leonardi M., Maimone G., Monticelli L. S., Raffa F., Zaccone R., and Ribera d’Alcalà M. (2004). Microbial processes contribution to carbon biogeochemistry in the Mediterranean Sea: spatial and temporal scale variability of activities and biomass. In ‘Proceedings of ASLO/TOS 2004 Ocean Research Conference, Honolulu’. (Ed. ASLO.) p. 85. (American Society of Limnology and Oceanography: Stony Brook, NY.)

Leonardi M., and Giacobbe S. (2001). The Oliveri-Tindari lagoon (Messina, Italy): evolution of the trophic-sedimentary environment and mollusc communities in the last twenty years. In ‘Mediterranean Ecosystems: Structures and Processes’. (Eds F. M. Faranda, L. Guglielmo and G. Spezie.) pp. 305–310. (Springer-Verlag Italia: Milano.)

Nausch, M. , Pollehne, F. , and Kerstan, E. (1998). Extracellular enzyme activities in relation to hydrodynamics in the Pomeranian Bight (Southern Baltic Sea). Microbial Ecology 36, 251–258.
Crossref | GoogleScholarGoogle Scholar | PubMed | Siuda W., and Chrost R. J. (1999). Microbial enzymatic regeneration and utilization of various organic P compounds in lake water. In ‘Proceedings of the 1st International Conference on Enzymes in the Environment: Activity, Ecology and Applications’. (Eds J. M. Barea, R. J. Chrost and R. P. Dick.) p. 77.

Sommaruga, R. , and Conde, D. (1997). Seasonal variability of metabolically active bacterioplankton in the euphotic zone of a hypertrophic lake. Aquatic Microbial Ecology 13, 241–248.
Thalassographic Reports (1990). Indagine interdisciplinare sul sistema degli stagni salmastri costieri di Oliveri-Tindari (Messina). I. Risultati delle campagne stagionali del 1987. Rapporti No 4, Consiglio Nazionale Ricerche, Istituto Sperimentale Talassografico, Messina, Italy.

Thalassographic Reports (1991). Indagine interdisciplinare sul sistema degli stagni salmastri costieri di Oliveri-Tindari (Messina). II. Risultati delle campagne mensili del 1988. Rapporti No 5, Consiglio Nazionale Ricerche, Istituto Sperimentale Talassografico, Messina, Italy.

Turk, V. , Rehnstam, A.-S. , Lundberg, E. , and Hagstrom, A. (1992). Release of bacterial DNA by marine nanoflagellates, an intermediate step in phosphorus regeneration. Applied and Environmental Microbiology 58, 3744–3750.


Zaccone, R. , and Caruso, G. (2002). Microbial hydrolysis of polysaccharides and organic phosphates in the Northern Adriatic Sea. Chemistry and Ecology 18(1–2), 85–94.
Crossref | GoogleScholarGoogle Scholar |

Zaccone, R. , Caruso, G. , La Ferla, R. , Maimone, G. , Puglisi, A. , and Leonardi, M. (2000). Ciclo annuale dell’attività microbica nell’ecosistema lagunare di Tindari (Messina). Biologia Marina Mediterranea 7, 291–295.


Zaccone, R. , Caruso, G. , and Calì, C. (2002). Heterotrophic bacteria in the northern Adriatic Sea: seasonal changes and ectoenzyme profile. Marine Environmental Research 54(1), 1–19.
Crossref | GoogleScholarGoogle Scholar | PubMed | PubMed |