Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

A simple approach for dealing with dynamics and uncertainty in fisheries with heterogeneous resource and effort distribution

J. C. Seijo A D , E. P. Pérez B and J. F. Caddy C
+ Author Affiliations
- Author Affiliations

A Universidad Marista de Mérida, Periférico Norte Tablaje 13941 Carretera Mérida-Progreso Mérida 97300, Yucatán, México.

B Universidad Católica del Norte, Facultad de Ciencias del Mar, Casilla 117, Coquimbo, Chile.

C T. W. Huxley School of Environment, Earth Sciences and Engineering, University of London, Senate House Malet Street, London WC1EHU, UK.

D Corresponding author. Email: jseijo@marista.edu.mx

Marine and Freshwater Research 55(3) 249-256 https://doi.org/10.1071/MF04040
Submitted: 24 February 2004  Accepted: 19 March 2004   Published: 19 May 2004

Abstract

Most fisheries models are based on dynamic pool assumptions. For sedentary and sessile species, these assumptions are inadequate, because they are spatially distributed in patches that vary in size, density and age structure. A simple bioeconomic model, negative binomial (NEGBIN), is proposed; this model relaxes the dynamic pool assumption without entering into the complexities of a geographically structured model. NEGBIN assumes a probability density function (the negative binomial), to describe heterogeneity in the density distribution over the population range. The model incorporates decision theory and different levels of risk aversion in resource management. The uncertainty associated with alternative fishing strategies, given imperfect knowledge about virgin stock biomass, is also included in the analysis. The model is applied to the Mesodesma donacium (surf clam) fishery in the central northern zone of Chile (South America). Alternative management strategies are evaluated with different levels of risk aversion. In the fisheries literature to date, this approach to evaluating the uncertainty associated with spatial allocation decisions has been rare. It is suggested that this kind of analysis, whether accompanied by quantitative probabilities of alternative states of nature or not, is an alternative way of dealing with risk and uncertainty in spatial allocation decisions.

Extra keywords: bioeconomic simulation, decision theory, risk, spatial allocation of effort, spatial heterogeneity, uncertainty.


Acknowledgment

We wish to express our gratitude to Miguel Angel Cabrera, Daniel Hernandez and Marian Hylkema for their useful comments on the first draft of this manuscript. We also thank Gabriel Novelo for his assistance in developing the figures.


References

Allen, P. M. , and McGlade, J. M. (1986). Dynamics of discovery and exploitation: the Scotian shelf groundfish fisheries. Canadian Journal of Fisheries and Aquatic Sciences 43, 1187–1200.


Ariz, L., Jerez, G., Pérez, E., and  Potocnjack, C. (1994). ‘Informe Final Proyecto: Bases para la Ordenación y Desarrollo de las Pesquerías Artesanales del Recurso Macha (M. donacium) en Chile Central.’ (Instituto de Fomento Pesquero-AGCII: Chile.)

Baranov, T. I. (1918). On the question of the biological basis of fisheries. Proceedings of the Institute of Ichthyological Investigations 1, 81–128.


Beverton, R. G. H. , and Holt, S. J. (1957). On the dynamic of exploited fish populations. Fisheries Investigations of London 2(19), 533.


Brower, J. E., and  Zar, J. H. (1984). ‘Field and Laboratory Methods for General Ecology.’ (W. C. Brown Publishers: Dubuque, IA, USA.)

Caddy, J. F. (1975). Spatial models for an exploited shellfish population and its application to George Bank scallop fishery. Journal of Fisheries Research Board of Canada 32, 1305–1328.


Caddy, J. F., and  Seijo, J. C. (1998). Application of a spatial model to explore rotating harvest strategies for sedentary species. In ‘Proceedings of the North Pacific Symposium on Invertebrate Stock Assessment and Management’. (Eds. S. G. Jamieson and A. Campbell)  pp. 359–365. (Department of Fisheries & Oceans: Ottawa, Canada.)

Castilla, J. C. (1994). The Chilean small-scale benthic shellfisheries and the institutionalization of new management practice. Ecological International Bulletin 21, 47–63.


Charnov, E. L. (1976). Optimal foraging: the marginal value theorem. Theoretical Population Biology 9, 129–136.
PubMed |

Defeo, O. , and Seijo, J. C. (1998). Yield-mortality models: a precautionary bio-economic approach. Fisheries Research 840, 1–10.


Elliot, J. M. (1977). Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biology Association, Scientific Publication 25, 1–158.


FAO (1993). Reference points for fisheries management: their potential application to straddling and highly migratory resources. FAO Fisheries Circular 864, 1–52.


FAO (1996). Precautionary approach to fisheries. FAO Fisheries Technical Papers 350(Part 1), 1–47.


Hilborn, R. , and Ledbetter, M. (1979). An analysis of the British Columbia purse-seine fleet dynamics and movement. Journal of Fisheries Research Board of Canada 36, 384–391.


Hilborn, R. , and Walters, C. (1987). A general model for simulation of stock and fleet dynamics in spatially heterogeneous fisheries. Canadian Journal of Fisheries and Aquatic Sciences 44, 1366–1369.


Hilborn, R., and  Walters, C. (1992). ‘Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty.’ (Chapman and Hall: New York, USA.)

Hillier, F. S., and  Lieberman, G. J. (2001). ‘Introduction to Operations Research.’ (McGraw Hill Company, Inc.: Boston, MA, USA.)

Orensanz, J. M., Parma, A., and  Hall, M. (1998). The analysis of concentration and crowding in shellfish research. In ‘Proceedings of the North Pacific Symposium on Invertebrate Stock Assessment and Management’. (Eds. G .S.Jamieson and A .Campbell)  pp. 143–157. (Department of Fisheries & Oceans: Ottawa, Canada.)

Pérez, E. (1996). ‘Análisis Dinámico de la Pesquería de Mesodesma donacium en Bahía de Coquimbo (Chile, IV Región) en Situaciones de Riesgo e Incertidumbre.’ MSc. Thesis. (CINVESTAV-IPN: Mérida, México.)

Pérez, E. P. , and Defeo, O. (1996). Estimación de riesgo e incertidumbre en modelos de producción captura-mortalidad. Biología Pesquera (Chile) 25, 3–15.


Schmid, A. A. (1989). ‘Benefit–Cost Analysis: A Political Economy Approach.’ (Westview Press: Boulder, CO, USA.)

Seijo, J. C. , Caddy, J. F. , and Euan, J. (1994). SPATIAL: Space-time dynamics in marine fisheries - a bioeconomic software package for sedentary species. FAO Computer Information Series (Fisheries) 6, 1–116.


Seijo, J. C., and  Pérez, E. (1996). Risk and uncertainty in modelling and management of sedentary resources: a precautionary bioeconomic approach. In ‘VIII Biennial Conference of the International Institute of Fisheries Economics and Trade, Casablanca June 1996’. (International Institute of Fisheries Economics and Trade: Casablanca, Morocco.)

Seijo, J. C. , Defeo, O. , and Salas, S. (1998). Fisheries bioeconomics: theory, modelling and management. FAO Fisheries Technical Paper 368, 1–108.


Seijo, J. C. , Pérez, E. , Cabrera, M. A. , and Hernández, D. (1997). Riesgo e incertidumbre en el manejo de recursos vivos: un enfoque bioeconómico precautorio. Gestión de Sistemas Oceanográficos del Pacífico Oriental. Comisión Oceanográfica Intergubernamental de la UNESCO 1046, 203–212.


Seijo, J. C. , and Caddy, J. F. (2000). Uncertainty in bio-economic reference points and indicators of marine Fisheries. Marine and Freshwater Research 51, 477–483.


Smith, V. L. (1969). On models of commercial fishing. The Journal of Political Economy 77, 181–198.
Crossref | GoogleScholarGoogle Scholar |

Sparre, P. , Ursin, E. , and Venema, S. C. (1989). Introduction to tropical fish stock assessment. Part 1. Manual. FAO Fisheries Technical Paper 306, 1–337.


Statsoft (2001). ‘Statistica: System Reference.’ (Statsoft, Inc.: Tulsa, OK, USA.)

Taylor, C. C. (1953). Nature of variability in trawl catches. Fisheries Bulletin 54, 145–166.


Welch, D. W. , and Ishida, Y. (1993). On the statistical distribution of salmon in the sea: application of the negative binomial distribution, and the influence of sampling effort. Canadian Journal of Fisheries and Aquatic Sciences 50, 1029–1038.