Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Processes affecting the chemical composition of Blue Lake, an alluvial gold-mine pit lake in New Zealand

Shaun L. L. Barker A C D , Jonathan P. Kim B , Dave Craw A , Russell D. Frew B and Keith A. Hunter B
+ Author Affiliations
- Author Affiliations

A Department of Geology, University of Otago, PO Box 56, Dunedin, New Zealand.

B Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand.

C Present address: Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia.

D Corresponding author. Email: shaun.barker@anu.edu.au

Marine and Freshwater Research 55(2) 201-211 https://doi.org/10.1071/MF03174
Submitted: 17 October 2003  Accepted: 12 January 2004   Published: 31 March 2004

Abstract

Blue Lake is an abandoned, water-filled alluvial gold-mine pit in Central Otago, New Zealand. Alluvial gold mining is generally considered to be chemically benign, unless mercury is added to assist gold separation. The major element, trace metal and isotopic composition of the pit lake was compared to nearby, unaffected streams. Blue Lake was found to be enriched in the major cations, with levels that were 2–5 times higher than in unaffected streams. Furthermore, Cu, Ni and Zn concentrations exceeded 10 nmol L–1 in Blue Lake; these levels were 2–30 times higher than those in nearby, unaffected streams. Processes affecting the lake’s characteristics include evaporative concentration, and the oxidation and dissolution of locally derived sulfide and sulfate minerals. Localised acidification in surface and ground waters around the lake leads to the mobilisation of Zn and Ni, resulting in lake waters being strongly enriched in these trace metals (concentrations greater than 40 nmol L–1), whereas surrounding stream waters have much lower Ni and Zn concentrations (less than 5 nmol L–1). Ongoing evaporative concentration, and the continuing mobilisation of trace metals, implies that metal enrichment in lake waters will continue to occur. The present study demonstrated that the ‘benign’ process of alluvial gold mining can have significant chemical consequences in resulting water bodies.

Extra keywords: alluvial gold mine, pit lake, sulfide dissolution, trace metals.


Acknowledgments

This study was partially funded by University of Otago and the NZ Foundation for Research, Science and Technology. Discussions with Candace Martin improved our techniques and presentation of the material in this paper. Field and laboratory assistance from Mike Barker and Damian Walls is much appreciated. E. Sholkovitz and two anonymous reviewers are thanked for providing constructive reviews.


References

Ahlers, W. , Reid, M. , Kim, J. , and Hunter, K. (1990). Contamination-free sample collection and handling protocols for trace elements in freshwaters. Australian Journal of Marine and Freshwater Research 41, 713–720.


Ahlers, W. , Kim, J. , and Hunter, K. (1991). Dissolved trace metals and their relationship to major elements in the Manuherikia River, a pristine sub-alpine catchment in central Otago, New Zealand. Australian Journal of Marine and Freshwater Research 42, 409–422.


Black, A. , and Craw, D. (2001). Arsenic, copper and zinc occurrence at the Wangaloa coal mine, southeast Otago, New Zealand. International Journal of Coal Geology 45, 181–193.
Crossref | GoogleScholarGoogle Scholar |

Chamberlain, C. P. , Poage, M. A. , Craw, D. , and Reynolds, R. C. (1999). Topographic development of the southern alps recorded by the isotopic composition of authigenic clay minerals, South Island, New Zealand. Chemical Geology 155, 279–294.
Crossref | GoogleScholarGoogle Scholar |

Craw, D. (1994). Contrasting alteration mineralogy at an unconformity beneath auriferous terrestrial sediments, central Otago, New Zealand. Sedimentary Geology 92, 17–30.
Crossref | GoogleScholarGoogle Scholar |

Davis, A. , and Ashenberg, D. (1989). The aqueous geochemistry of the Berkeley Pit, Butte, Montana, U.S.A. Applied Geochemistry 4, 23–36.
Crossref | GoogleScholarGoogle Scholar |

Donnelly, T. , Waldron, S. , Tait, A. , Dougans, J. , and Bearhop, S. (2001). Hydrogen isotope analysis of abundance and deuterium-enriched waters by reduction over chromium on-line to a dynamic Dual dual inlet isotope-ratio mass spectrometer. Rapid Communications in Mass Spectrometry 15, 1297–1303.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Douglas, B. (1986). ‘Lignite Resources of Central Otago New Zealand.’ Energy Research and Development Committee Report. (University of Auckland: Auckland, New Zealand.)

Fox, L. E. , and Wofsy, S. C. (1983). Kinetics of removal of iron colloids from estuaries. Geochimica et Cosmochimica Acta 47, 211–216.
Crossref | GoogleScholarGoogle Scholar |

Frew, R. D. , Heywood, K. J. , and Dennis, P. F. (1995). Oxygen isotope study of water masses in the Princess Elizabeth Trough, Antarctica. Marine Chemistry 49, 141–153.
Crossref | GoogleScholarGoogle Scholar |

Garrels, R. M. , and Thompson, M. E. (1960). Oxidation of pyrite by iron sulfate solutions. American Journal of Science 258A, 57–67.


Garrels, R., and  Mackenzie, F. (1971). ‘Evolution of Sedimentary Rocks.’ (W.W. Norton: New York, USA.)

Gonfiantini, R. (1986). Environmental isotopes in lake studies. In ‘Handbook of Environmental Isotope Geochemistry’. (Eds. P. Frotz and J. -C.Fontes)  pp. 113–168. (Elsevier: Amsterdam, The Netherlands.)

Govindaraju, K. A. (1994). 1994 Compilation of working values and sample description for 383 geostandards. Geostandards Newsletter 18, 1–158.


Hunter, K. A. (1983). On the estuarine mixing of dissolved substances in relation to colloid stability and surface properties. Geochimica et Cosmochimica Acta 47, 467–473.
Crossref | GoogleScholarGoogle Scholar |

Hunter, K. , Leonard, M. R. , Carpenter, P. D. , and Smith, J. D. (1997). Aggregation of iron colloids in estuaries: a heterogeneous kinetics study using continuous mixing of river and sea waters. Colloids and Surfaces A 129, 111–121.


Kim, J. , Reid, M. , Cunningham, R. , and Hunter, K. (1996). Aqueous chemistry of major ions and trace metals in the Clutha River, New Zealand. Marine and Freshwater Research 47, 919–928.


Kim, J. , and Hunter, K. A. (1997). Aqueous chemistry of major ions and trace metals in the Takaka-Cobb River system, New Zealand. Marine and Freshwater Research 48, 257–266.


Kim, J. , Hunter, K. , and Reid, M. (1999). Geochemical processes affecting the major ion composition of rivers in the South Island, New Zealand. Marine and Freshwater Research 50, 699–709.


Kim, J. , and Hunter, K. (2001). Geochemical cycling of major and minor elements in the Taieri River and Waipori River catchments. Journal of the Royal Society of New Zealand 31, 745–762.


Koroleff, I. (1976). Analysis of micronutrients. In ‘Methods of Seawater Analysis’. (Ed K. Grasshof)  pp. 134–145. (Verlag-Chimie: Berlin, Germany.)

Langmuir, D. (1997). ‘Aqueous Environmental Geochemistry.’ (Prentice Hall: Upper Saddle River, NJ, USA.)

Mackinnon, T. C. (1983). Origin of the Torlesse Terrane and coeval rocks, South Island, New Zealand. Geological Society of America Bulletin 94, 967–985.


Macpherson, E. O. (1933). Gold-bearing conglomerates of central Otago. New Zealand Journal of Science 14, 255–271.


Majoube, M. (1971). Fractionnement en oxygene-18 et en deuterium entre l’eau et sa vapeur. The Journal of Chemical Physics 197, 1423–1436.


Martin, J. M. , Guan, D. M. , Elbaz, P. F. , Thomas, A. J. , and Gordeev, V. V. (1993). Preliminary assessment of the distributions of some trace elements (As, Cd, Cu, Fe, Ni, Pb and Zn) in a pristine aquatic environment: the Lena River estuary (Russia). Marine Chemistry 43, 185–199.
Crossref | GoogleScholarGoogle Scholar |

Mortimer, N. , and Roser, B. P. (1992). Geochemical evidence for the position of the Caples-Torlesse boundary in the Otago schist, New Zealand. Journal of the Geological Society of London 149, 967–977.


Murray, J. W. , and Gill, G. (1978). The geochemistry of iron in Puget Sound. Geochimica et Cosmochimica Acta 42, 9–19.
Crossref | GoogleScholarGoogle Scholar |

Norrish, K. and  Chappell, B. (1967). X-ray fluoresence spectrography. In ‘X-Ray Fluoresence Spectrography’. (Ed J. Zussman)  pp. 161–214. (Academic Press: London, UK.)

Norrish, K. , and Hutton, J. T. (1969). An accurate x-ray spectrographic method for the analysis of a wide range of geological samples. Geochimica et Cosmochimica Acta 33, 431–453.
Crossref | GoogleScholarGoogle Scholar |

Palmer, K. R., Johnstone, R. D., Holt, S. and  Mortimer, N. (1992). ‘X-ray Fluorescence Analyses of Metamorphic Rocks from the Caples and Torlesse Terranes, South Island, New Zealand.’ G148 New Zealand Geological Survey Report G148. (New Zealand Geological Survey: Wellington, New Zealand.)

Reid, M. , Kim, J. , and Hunter, K. (1999). Trace metal and major ion concentrations in Lake Hayes and Manapouri. Journal of the Royal Society of New Zealand 29, 245–255.


Roser, B. P. , and Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology 67, 119–139.
Crossref | GoogleScholarGoogle Scholar |

Sholkovitz, E. R. , Boyle, E. A. , and Price, N. B. (1978). The removal of dissolved humic acids and iron during estuarine mixing. Earth and Planetary Science Letters 40, 130–136.
Crossref | GoogleScholarGoogle Scholar |

Stookey, L. (1970). Ferrozine – a new spectrophotometric reagent for iron. Analytical Chemistry 42, 779–781.


Williams, G. J. (1974). ‘Cenozoic Geology of the Lower Nevis Basin, with Special Reference to Shale Deposits.’ (Department of Scientific and Industrial Research Bulletin: Wellington, New Zealand.)

Youngson, J. H. (1995). Sulphur mobility and sulphur-mineral precipitation during early Miocene: recent uplift and sedimentation in central Otago, New Zealand. New Zealand Journal of Geology and Geophysics 38, 407–417.


Youngson, J. H. , Craw, D. , Landis, C. A. , and Schmitt, K. R. (1998). Redefinition and interpretation of late Miocene-Pleistocene terrestrial stratigraphy, central Otago, New Zealand. New Zealand Journal of Geology and Geophysics 41, 51–68.