Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Bacteriophage therapy: coping with the growing antibiotic resistance problem

Nina Chanishvili A and Rustam Aminov B
+ Author Affiliations
- Author Affiliations

A The Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia. Email: nina.chanishvili@gmail.com

B School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom. Email: rustam.aminov@abdn.ac.uk

Microbiology Australia 40(1) 5-7 https://doi.org/10.1071/MA19011
Published: 5 March 2019

Abstract

The global problem of multidrug-resistant bacterial pathogens requires urgent actions, including the development of therapies supplementary or alternative to antibiotics. One of the infection control options could be phage therapy. This article gives a brief overview of phage therapy potentials as well as the challenges it faces in order to become a widely accepted form of infection treatment.


References

[1]  Aminov, R. (2017) History of antimicrobial drug discovery: major classes and health impact. Biochem Pharmacol. 133, 4–19.
History of antimicrobial drug discovery: major classes and health impact.Crossref | GoogleScholarGoogle Scholar | 27720719PubMed |

[2]  Aminov, R.I. (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front. Microbiol. 1, 134.
A brief history of the antibiotic era: lessons learned and challenges for the future.Crossref | GoogleScholarGoogle Scholar | 21687759PubMed |

[3]  Boucher, H.W. et al. (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1–12.
Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America.Crossref | GoogleScholarGoogle Scholar | 19035777PubMed |

[4]  O’Neill, J. (2014) The review on antimicrobial resistance. http://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf

[5]  Aminov, R.I. (2009) The role of antibiotics and antibiotic resistance in nature. Environ. Microbiol. 11, 2970–2988.
The role of antibiotics and antibiotic resistance in nature.Crossref | GoogleScholarGoogle Scholar | 19601960PubMed |

[6]  Davies, J. et al. (2006) The world of subinhibitory antibiotic concentrations. Curr. Opin. Microbiol. 9, 445–453.
The world of subinhibitory antibiotic concentrations.Crossref | GoogleScholarGoogle Scholar | 16942902PubMed |

[7]  Andersson, D.I. and Hughes, D. (2011) Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol. Rev. 35, 901–911.
Persistence of antibiotic resistance in bacterial populations.Crossref | GoogleScholarGoogle Scholar | 21707669PubMed |

[8]  Aminov, R.I. (2011) Horizontal gene exchange in environmental microbiota. Front. Microbiol. 2, 158.
Horizontal gene exchange in environmental microbiota.Crossref | GoogleScholarGoogle Scholar | 21845185PubMed |

[9]  Van Boeckel, T.P. et al. (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect. Dis. 14, 742–750.
Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data.Crossref | GoogleScholarGoogle Scholar | 25022435PubMed |

[10]  Van Boeckel, T.P. et al. (2015) Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 112, 5649–5654.
Global trends in antimicrobial use in food animals.Crossref | GoogleScholarGoogle Scholar | 25792457PubMed |

[11]  d’Hérelle, F. (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. C. R. Acad. Sci. Ser. D 165, 373–375.

[12]  Borysowski, J. and Górski, A. (2008) Is phage therapy acceptable in the immunocompromised host? Int. J. Infect. Dis. 12, 466–471.
Is phage therapy acceptable in the immunocompromised host?Crossref | GoogleScholarGoogle Scholar | 18400541PubMed |

[13]  Międzybrodzki, R. et al. (2012) Clinical aspects of phage therapy. Adv. Virus Res. 83, 73–121.
Clinical aspects of phage therapy.Crossref | GoogleScholarGoogle Scholar | 22748809PubMed |

[14]  McCallin, S. et al. (2013) Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects. Virology 443, 187–196.
Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects.Crossref | GoogleScholarGoogle Scholar | 23755967PubMed |

[15]  Schmelcher, M. et al. (2012) Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 7, 1147–1171.
Bacteriophage endolysins as novel antimicrobials.Crossref | GoogleScholarGoogle Scholar | 23030422PubMed |

[16]  Jalasvuori, M. et al. (2011) Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids. Biol. Lett. 7, 902–905.
Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids.Crossref | GoogleScholarGoogle Scholar | 21632619PubMed |

[17]  Zhang, Q.G. and Buckling, A. (2012) Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms. Evol. Appl. 5, 575–582.
Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms.Crossref | GoogleScholarGoogle Scholar | 23028398PubMed |

[18]  O’Sullivan, L. et al. (2016) Bacteriophage-based tools: recent advances and novel applications. F1000Res. 5, 2782.
Bacteriophage-based tools: recent advances and novel applications.Crossref | GoogleScholarGoogle Scholar | 27990274PubMed |

[19]  Torres-Barceló, C. and Hochberg, M.E. (2016) Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 24, 249–256.
Evolutionary rationale for phages as complements of antibiotics.Crossref | GoogleScholarGoogle Scholar | 26786863PubMed |

[20]  Kazi, M. and Annapure, U.S. (2016) Bacteriophage biocontrol of foodborne pathogens. J. Food Sci. Technol. 53, 1355–1362.
Bacteriophage biocontrol of foodborne pathogens.Crossref | GoogleScholarGoogle Scholar | 27570260PubMed |

[21]  Lerminiaux, N.A. and Cameron, A.D.S. (2019) Horizontal transfer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 65, 34–44.
Horizontal transfer of antibiotic resistance genes in clinical environments.Crossref | GoogleScholarGoogle Scholar | 30248271PubMed |

[22]  Sybesma, W. et al. (2018) Silk route to the acceptance and re-implementation of bacteriophage therapy—part II. Antibiotics (Basel) 7, 1–23.
Silk route to the acceptance and re-implementation of bacteriophage therapy—part II.Crossref | GoogleScholarGoogle Scholar |

[23]  Jault, P. et al. (2019) Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 19, 35–45.
Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial.Crossref | GoogleScholarGoogle Scholar | 30292481PubMed |

[24]  Leitner, L. et al. (2017) Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial. BMC Urol. 17, 90.
Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial.Crossref | GoogleScholarGoogle Scholar | 28950849PubMed |

[25]  Ujmajuridze, A. et al. (2018) Adapted bacteriophages for treating urinary tract infections. Front. Microbiol. 9, 1832.
Adapted bacteriophages for treating urinary tract infections.Crossref | GoogleScholarGoogle Scholar | 30131795PubMed |