Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Advances in the understanding of the Cryptococcus neoformans and C. gattii species complexes and cryptococcosis

Carolina Firacative A C , Luciana Trilles B and Wieland Meyer A B
+ Author Affiliations
- Author Affiliations

A Molecular Mycology Research Laboratory, CIDM, Sydney Medical School – Westmead Hospital, MBI, The University of Sydney, WIMR, Sydney, Australia

B Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil

C Tel: +61 2 8627 3432, Email: sfir4568@uni.sydney.edu.au

Microbiology Australia 38(3) 106-111 https://doi.org/10.1071/MA17043
Published: 11 August 2017

Abstract

The rising incidence of cryptococcosis, a potentially fatal fungal infection affecting both immunocompromised and immunocompetent humans and animals, and the emergence of disease outbreaks, has increased the need for more in-depth studies and constant vigilance of its two etiological agents, the cosmopolitan and well known Cryptococcus neoformans and its sibling species C. gattii. As a result, a global scientific network has established formal links between institutions to gain better insights into Cryptococcus and cryptococcosis, enabling collaborations amongst researchers with different backgrounds, perspectives and skills. Interdisciplinary projects include: (1) the study of the ecology and geographical distribution of the agents of cryptococcosis; (2) the application of new alternative methodologies for the rapid and accurate identification of the two sibling species and major molecular types/possible cryptic species (VNI-VNIV and VGI-VGIV); (3) the use of different animal models of infection to assess cryptococcal pathogenesis and virulence factors; and (4) population genetics studies directed towards the discovery of virulence/tissue tropism associated genetic signatures. These studies enrich the knowledge and understanding of the epidemiology of this mycosis and help to better comprehend fungal virulence, genetics, pathogenesis, antifungal susceptibility, as well as investigating the regional and global spread, to improve treatment options of the disease caused by these important emerging pathogenic yeasts.


References

[1]  Rajasingham, R. et al. (2017) Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect. Dis. 17, 873–888.
Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis.Crossref | GoogleScholarGoogle Scholar |

[2]  Meyer, W. and Mitchell, T.G. (1995) Polymerase chain reaction fingerprinting in fungi using single primers specific to minisatellites and simple repetitive DNA sequences: strain variation in Cryptococcus neoformans. Electrophoresis 16, 1648–1656.
Polymerase chain reaction fingerprinting in fungi using single primers specific to minisatellites and simple repetitive DNA sequences: strain variation in Cryptococcus neoformans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovV2ltrw%3D&md5=262fbea364005c075063e4b6d9f594d8CAS |

[3]  Boekhout, T. et al. (2001) Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. Microbiology 147, 891–907.
Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVeisLw%3D&md5=a65234f2f91f1fbf14957dceb7806f7eCAS |

[4]  Meyer, W. et al. (2003) Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg. Infect. Dis. 9, 189–195.
Molecular typing of IberoAmerican Cryptococcus neoformans isolates.Crossref | GoogleScholarGoogle Scholar |

[5]  Meyer, W. et al. (2009) Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med. Mycol. 47, 561–570.
Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1agu7bF&md5=c71dd4b04f29fc35fded676a93f46a6eCAS |

[6]  Hagen, F. et al. (2015) Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet. Biol. 78, 16–48.
Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjs1ajtr8%3D&md5=f195b8021d2cf9dc0da07d2cb3979c71CAS |

[7]  Kwon-Chung, K.J. et al. (2017) The case for adopting the ‘species complex’ nomenclature for the etiological agents of cryptococcosis. MSphere 2, e00357-16.
The case for adopting the ‘species complex’ nomenclature for the etiological agents of cryptococcosis.Crossref | GoogleScholarGoogle Scholar |

[8]  Campbell, L.T. et al. (2005) Clonality and recombination in genetically differentiated subgroups of Cryptococcus gattii. Eukaryot. Cell 4, 1403–1409.
Clonality and recombination in genetically differentiated subgroups of Cryptococcus gattii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXoslGmtLo%3D&md5=a413b3ddf1c66baf857ad09907be0cd7CAS |

[9]  Cogliati, M. (2013) Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: an atlas of the molecular types. Scientifica (Cairo) 2013, 675213.
Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: an atlas of the molecular types.Crossref | GoogleScholarGoogle Scholar |

[10]  Meyer, W. and Trilles, L. (2010) Genotyping of the Cryptococcus neoformans/C. gattii species complex. Australian Biochemist. 41, 11–15.

[11]  Meyer, W. et al. (2011) Molecular typing of the Cryptococcus neoformans/Cryptococcus gattii species complex. In Heitman J., et al. Cryptococcus: From Human Pathogen to Model Yeast. Washington, DC: ASM. pp. 327–357.

[12]  Hagen, F. et al. (2012) Autochthonous and dormant Cryptococcus gattii infections in Europe. Emerg. Infect. Dis. 18, 1618–1624.
Autochthonous and dormant Cryptococcus gattii infections in Europe.Crossref | GoogleScholarGoogle Scholar |

[13]  Escandón, P. et al. (2010) Isolation of Cryptococcus gattii molecular type VGIII, from Corymbia ficifolia detritus in Colombia. Med. Mycol. 48, 675–678.
Isolation of Cryptococcus gattii molecular type VGIII, from Corymbia ficifolia detritus in Colombia.Crossref | GoogleScholarGoogle Scholar |

[14]  Firacative, C. et al. (2011) First environmental isolation of Cryptococcus gattii serotype B, from Cúcuta, Colombia. Biomedica 31, 118–123.
First environmental isolation of Cryptococcus gattii serotype B, from Cúcuta, Colombia.Crossref | GoogleScholarGoogle Scholar |

[15]  Trilles, L. et al. (2003) Genetic characterization of environmental isolates of the Cryptococcus neoformans species complex from Brazil. Med. Mycol. 41, 383–390.
Genetic characterization of environmental isolates of the Cryptococcus neoformans species complex from Brazil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvF2j&md5=3d72fa11d2468c63ec58209968aac3d6CAS |

[16]  Byrnes, E.J. et al. (2010) Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog. 6, e1000850.
Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States.Crossref | GoogleScholarGoogle Scholar |

[17]  Fraser, J.A. et al. (2005) Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437, 1360–1364.
Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCrur3E&md5=5b2f25b05d5171519966758e70921873CAS |

[18]  Lizarazo, J. et al. (2014) Retrospective study of the epidemiology and clinical manifestations of Cryptococcus gattii infections in Colombia from 1997 to 2011. PLoS Negl. Trop. Dis. 8, e3272.
Retrospective study of the epidemiology and clinical manifestations of Cryptococcus gattii infections in Colombia from 1997 to 2011.Crossref | GoogleScholarGoogle Scholar |

[19]  Kaocharoen, S. et al. (2013) Molecular epidemiology reveals genetic diversity amongst isolates of the Cryptococcus neoformans/C. gattii species complex in Thailand. PLoS Negl. Trop. Dis. 7, e2297.
Molecular epidemiology reveals genetic diversity amongst isolates of the Cryptococcus neoformans/C. gattii species complex in Thailand.Crossref | GoogleScholarGoogle Scholar |

[20]  Pappas, P.G. (2013) Cryptococcal infections in non-HIV-infected patients. Trans. Am. Clin. Climatol. Assoc. 124, 61–79.

[21]  Walraven, C.J. et al. (2011) Fatal disseminated Cryptococcus gattii infection in New Mexico. PLoS One 6, e28625.
Fatal disseminated Cryptococcus gattii infection in New Mexico.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1aquw%3D%3D&md5=255986810c86fd213c09ca37b3a49655CAS |

[22]  Firacative, C. et al. (2016) MLST and whole-genome-based population analysis of Cryptococcus gattii VGIII links clinical, veterinary and environmental strains, and reveals divergent serotype specific sub-populations and distant ancestors. PLoS Negl. Trop. Dis. 10, e0004861.
MLST and whole-genome-based population analysis of Cryptococcus gattii VGIII links clinical, veterinary and environmental strains, and reveals divergent serotype specific sub-populations and distant ancestors.Crossref | GoogleScholarGoogle Scholar |

[23]  Lazera, M.S. et al. (2000) Possible primary ecological niche of Cryptococcus neoformans. Med. Mycol. 38, 379–383.
Possible primary ecological niche of Cryptococcus neoformans.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzitF2ntw%3D%3D&md5=16947b602ebdfd5ef62445e51160a12cCAS |

[24]  McClelland, E.E. et al. (2013) The role of host gender in the pathogenesis of Cryptococcus neoformans infections. PLoS One 8, e63632.
The role of host gender in the pathogenesis of Cryptococcus neoformans infections.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslOht74%3D&md5=7232bd4cb2ad322f0df00221ed5a447bCAS |

[25]  Singer, L.M. et al. (2014) Antifungal drug susceptibility and phylogenetic diversity among Cryptococcus isolates from dogs and cats in North America. J. Clin. Microbiol. 52, 2061–2070.
Antifungal drug susceptibility and phylogenetic diversity among Cryptococcus isolates from dogs and cats in North America.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Smtr3N&md5=0a1c556b7ad75ccbc1011622910b362cCAS |

[26]  Firacative, C. et al. (2012) MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS One 7, e37566.
MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot12rsb0%3D&md5=3ef0191b46e5c2d428f64d7512d0a2c7CAS |

[27]  Trilles, L. et al. (2014) Identification of the major molecular types of Cryptococcus neoformans and C. gattii by Hyperbranched rolling circle amplification. PLoS One 9, e94648.
Identification of the major molecular types of Cryptococcus neoformans and C. gattii by Hyperbranched rolling circle amplification.Crossref | GoogleScholarGoogle Scholar |

[28]  Thompson, G.R. et al. (2014) Phenotypic differences of Cryptococcus molecular types and their implications for virulence in a Drosophila model of infection. Infect. Immun. 82, 3058–3065.
Phenotypic differences of Cryptococcus molecular types and their implications for virulence in a Drosophila model of infection.Crossref | GoogleScholarGoogle Scholar |

[29]  Firacative, C. et al. (2014) Galleria mellonella model identifies highly virulent strains among all major molecular types of Cryptococcus gattii. PLoS One 9, e105076.
Galleria mellonella model identifies highly virulent strains among all major molecular types of Cryptococcus gattii.Crossref | GoogleScholarGoogle Scholar |

[30]  Engelthaler, D.M. et al. (2014) Cryptococcus gattii in North American Pacific Northwest: whole-population genome analysis provides insights into species evolution and dispersal. MBio 5, e01464-14.
Cryptococcus gattii in North American Pacific Northwest: whole-population genome analysis provides insights into species evolution and dispersal.Crossref | GoogleScholarGoogle Scholar |