Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Persistent or long-term coronavirus infection in Australian bats

Craig Smith
+ Author Affiliations
- Author Affiliations

University of Queensland
Brisbane, Qld, Australia
Email: craig.smith@daf.qld.gov.au

Microbiology Australia 38(1) 8-11 https://doi.org/10.1071/MA17004
Published: 21 February 2017

Abstract

When the World Health Organization declared the end of the global outbreak of severe acute respiratory syndrome (SARS) on the 5 July 2003, more than 8000 cases with over 800 fatalities had been reported in 32 countries worldwide and financial costs to the global economy were close to $US40 billion1,2. Coronaviruses were identified as being responsible for the outbreaks of both SARS and Middle East respiratory syndrome (MERS, the latter in 2013). Subsequently, bats (order Chiroptera) were identified as the natural hosts for a large number of novel and genetically diverse coronaviruses, including the likely ancestors to SARS-like and MERS-like coronaviruses38.


References

[1]  Centers for Disease Control and Prevention (2003) Update: outbreak of severe acute respiratory syndrome --- worldwide, 2003. MMWR Morb. Mortal. Wkly Rep. 52, 241–246.

[2]  Lee, J.W. and McKibbin, W.J. (2004) Estimating the global economic cost of SARS. In Learning from SARS: preparing for the next disease outbreak: workshop summary (Knobler, S. et al. eds). Washington, DC: National Academies Press.

[3]  Drosten, C. et al. (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976.
Identification of a novel coronavirus in patients with severe acute respiratory syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslajurw%3D&md5=8f6564f7a92cde203e54d814265290f1CAS |

[4]  Zaki, A.M. et al. (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820.
Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ekt73P&md5=758f626467043c8a6fb4b2dbb97a87e8CAS |

[5]  Li, W. et al. (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679.
Bats are natural reservoirs of SARS-like coronaviruses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFChsLjO&md5=2f3ab2fa831dc1abfa767e4791a1848aCAS |

[6]  Lau, S.K. et al. (2005) Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA 102, 14040–14045.
Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOqsbbO&md5=e377ef51cdd88ca769126a9afbdc8c9dCAS |

[7]  Memish, Z.A. et al. (2013) Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg. Infect. Dis. 19, 1819–1823.
Middle East respiratory syndrome coronavirus in bats, Saudi Arabia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ChsL7I&md5=a4f22c729a96f53c5e592f7eb862c7baCAS |

[8]  Góes, L.G.B. et al. (2016) Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil. Infect. Genet. Evol. 44, 510–513.
Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil.Crossref | GoogleScholarGoogle Scholar |

[9]  Spaan, W.J.M. et al. (2005) Virus taxonomy. Fauquet, C.M. et al., eds. San Diego: Elsevier Inc.

[10]  Lai, M.M. and Cavanagh, D. (1997) The molecular biology of coronaviruses. Adv. Virus Res. 48, 1–100.
The molecular biology of coronaviruses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVeju7o%3D&md5=0fc9f0ea65205909869151231236887bCAS |

[11]  Fraenkel-Conrat, H. et al. (1988) Virology. New Jersey: Prentice-Hall.

[12]  Hartmann, K. (2005) Feline infectious peritonitis. Vet. Clin. North Am. Small Anim. Pract. 35, 39.
Feline infectious peritonitis.Crossref | GoogleScholarGoogle Scholar |

[13]  Weiss, S.R. and Navas-Martin, S. (2005) Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev. 69, 635–664.
Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1Wlsg%3D%3D&md5=34ffd82dbfdba0b3903096818c2cf2f2CAS |

[14]  Kim, H.K. et al. (2016) Detection of severe acute respiratory syndrome-like, Middle East respiratory syndrome-like bat coronaviruses and group H rotavirus in faeces of Korean bats. Transbound. Emerg. Dis. 63, 365–372.
Detection of severe acute respiratory syndrome-like, Middle East respiratory syndrome-like bat coronaviruses and group H rotavirus in faeces of Korean bats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVyns77I&md5=417565472ce374f8bd6222ccbb8672c2CAS |

[15]  Drexler, J.F. et al. (2011) Amplification of emerging viruses in a bat colony. Emerg. Infect. Dis. 17, 449–456.
Amplification of emerging viruses in a bat colony.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlehu70%3D&md5=3e28602c15937a54ab56595b2c3b01d3CAS |

[16]  Lau, S.K.P. et al. (2010) Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. J. Virol. 84, 2808–2819.
Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1eis7w%3D&md5=6a8309777d4ba7477d1fae30972b817eCAS |

[17]  Smith, C.S. et al. (2016) Coronavirus infection and diversity in bats in the Australasian region. EcoHealth 13, 72–82.
Coronavirus infection and diversity in bats in the Australasian region.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28fmvF2isw%3D%3D&md5=53f3060309400329370b08fe8e1acae9CAS |

[18]  Smith, C.S. et al. (2010) Sampling small quantities of blood from microbats. Acta Chiropt. 12, 255–258.
Sampling small quantities of blood from microbats.Crossref | GoogleScholarGoogle Scholar |

[19]  Smith, C.S. (2014) Australian bat coronaviruses. Brisbane: University of Queensland.

[20]  Chu, D.K. et al. (2006) Coronaviruses in bent-winged bats (Miniopterus spp.). J. Gen. Virol. 87, 2461–2466.
Coronaviruses in bent-winged bats (Miniopterus spp.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xoslajsrg%3D&md5=84a483826830a45cf7fd4a9c656a1c34CAS |

[21]  Tang, X.C. et al. (2006) Prevalence and genetic diversity of coronaviruses in bats from China. J. Virol. 80, 7481–7490.
Prevalence and genetic diversity of coronaviruses in bats from China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVWgtL8%3D&md5=313da450c74cf872305f02e17a1f2e36CAS |

[22]  Addie, D.D. et al. (1995) Risk of feline infectious peritonitis in cats naturally infected with feline coronavirus. Am. J. Vet. Res. 56, 429–434.
| 1:STN:280:DyaK2MzgsFemtA%3D%3D&md5=645f2cf6ea73ec02a145f12d5fb02c00CAS |

[23]  Tidemann, C.R. and Woodside, D.P. (1978) A collapsible bat-trap and a comparison of results obtained with the trap and with mist-nets. Aust. Wildl. Res. 5, 355–362.
A collapsible bat-trap and a comparison of results obtained with the trap and with mist-nets.Crossref | GoogleScholarGoogle Scholar |

[24]  Constantine, D.G. (1958) An automatic bat-collecting device. J. Wildl. Manage. 22, 17–22.
An automatic bat-collecting device.Crossref | GoogleScholarGoogle Scholar |

[25]  Tuttle, M.D. (1974) An improved trap for bats. J. Mammal. 55, 475–477.
An improved trap for bats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c7ms1Glsw%3D%3D&md5=cdf922162d9718c2d19485aec51d9213CAS |

[26]  Plowright, R.K. et al. (2008) Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc. Biol. Sci. 275, 861–869.
Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus).Crossref | GoogleScholarGoogle Scholar |

[27]  Breed, A.C. et al. (2011) Evidence of endemic Hendra virus infection in flying-foxes (Pteropus conspicillatus) – implications for disease risk management. PLoS One 6, e28816.
Evidence of endemic Hendra virus infection in flying-foxes (Pteropus conspicillatus) – implications for disease risk management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1Shtg%3D%3D&md5=d10574359af66cef22bca17dc9b301c9CAS |

[28]  Gloza-Rausch, F. et al. (2008) Detection and prevalence patterns of group I coronaviruses in bats, Northern Germany. Emerg. Infect. Dis. 14, 626–631.
Detection and prevalence patterns of group I coronaviruses in bats, Northern Germany.Crossref | GoogleScholarGoogle Scholar |

[29]  Pfefferle, S. et al. (2009) Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg. Infect. Dis. 15, 1377–1384.
Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana.Crossref | GoogleScholarGoogle Scholar |

[30]  Plowright, R. et al. (2011) Urban habituation, connectivity, and stress synchrony: Hendra virus emergence from flying foxes (Pteropus spp.). EcoHealth 7, S36–S37.

[31]  Drexler, J.F. et al. (2011) Amplification of emerging viruses in a bat colony. Emerg. Infect. Dis. 17, 449–456.
Amplification of emerging viruses in a bat colony.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlehu70%3D&md5=3e28602c15937a54ab56595b2c3b01d3CAS |

[32]  O’Shea, T.J. et al. (2014) Bat flight and zoonotic viruses. Emerg. Infect. Dis. 20, 741–745.
Bat flight and zoonotic viruses.Crossref | GoogleScholarGoogle Scholar |

[33]  Zhang, G.J. et al. (2013) Comparative Analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339, 456–460.
Comparative Analysis of bat genomes provides insight into the evolution of flight and immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFyntLg%3D&md5=af54ea175aa3086aeeabb1377cc39cf6CAS |

[34]  Roberts, B.J. et al. (2012) Long-distance and frequent movements of the flying-fox Pteropus poliocephalus: implications for management. PLoS One 7, e42532.
Long-distance and frequent movements of the flying-fox Pteropus poliocephalus: implications for management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOls7rL&md5=4976b2e2f2bf258964db1e0518675503CAS |

[35]  Breed, A.C. et al. (2010) Bats without borders: long-distance movements and implications for disease risk management. EcoHealth 7, 204–212.
Bats without borders: long-distance movements and implications for disease risk management.Crossref | GoogleScholarGoogle Scholar |

[36]  Jeong, J. et al. (2017) Persistent infections support maintenance of a coronavirus in a population of Australian Epidemiol. Infect. , .