Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Marsupial oral cavity microbiome

Philip S Bird A D , Wayne SJ Boardman B , Darren J Trott B and Linda L Blackall C
+ Author Affiliations
- Author Affiliations

A The University of Queensland, School of Veterinary Science, Faculty of Science, Gatton, Qld 4343, Australia

B The University of Adelaide, School of Animal and Veterinary Sciences, Roseworthy, SA 5371, Australia

C Swinburne University of Technology, School of Science, Faculty of Science, Engineering and Technology, Hawthorn, Vic. 3122, Australia

D Corresponding author. Tel: +61 7 5460 1834, Fax: +61 7 5460 1922, Email: phil.bird@uq.edu.au

Microbiology Australia 36(1) 29-31 https://doi.org/10.1071/MA15009
Published: 6 March 2015

Abstract

The oral microbiome of humans and animals will cause oral disease within their lifetimes and include a large number of endogenous cariogenic, periodontal and other opportunistic pathogens. Studies over many decades have attempted to determine which bacteria are involved in oral diseases. Earlier studies used exclusively culture-based methods. Now culture-independent methods are being used to determine the composition of the microbiome in health and disease. There have been limited numbers of studies of the marsupial microbiome and this report covers some of the research of those studies.


References

[1]  Tsang, K.L. et al. (2005) Caries and periodontal disease: two diseases, one biofilm. Microbiol. Aust. 23, 110–112.

[2]  Marsh, P.D. (2003) Are dental diseases examples of ecological catastrophes? Microbiology 149, 279–294.
Are dental diseases examples of ecological catastrophes?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFSru7o%3D&md5=62161652f1d50a63cc61cdfd55fc0b9cCAS | 12624191PubMed |

[3]  Lee, E.F. et al. (2011) Loss of tooth-supporting bone in the koala (Phascolarctos cinereus) with age. Aust. J. Zool. 59, 49–53.
Loss of tooth-supporting bone in the koala (Phascolarctos cinereus) with age.Crossref | GoogleScholarGoogle Scholar |

[4]  Pettett, L.M. et al. (2012) The development of an oral health charting system for koalas (Phascolarctos cinereus). J. Vet. Dent. 29, 232–241.
| 23505786PubMed |

[5]  Bird, P.S. et al. (2002) Oral disease in animals: the Australian perspective. Isolation and characterisation of black-pigmented bacteria from the oral cavity of marsupials. Anaerobe 8, 79–87.
Oral disease in animals: the Australian perspective. Isolation and characterisation of black-pigmented bacteria from the oral cavity of marsupials.Crossref | GoogleScholarGoogle Scholar |

[6]  Pérez-Chaparro, P.J. et al. (2014) Newly identified pathogens associated with periodontitis: A systematic review. J. Dent. Res. 93, 846–858.
Newly identified pathogens associated with periodontitis: A systematic review.Crossref | GoogleScholarGoogle Scholar | 25074492PubMed |

[7]  Sturgeon, A. et al. (2014) Characterization of the oral microbiota of healthy cats using next-generation sequencing. Vet. J. 201, 223–229.
Characterization of the oral microbiota of healthy cats using next-generation sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFCgsbY%3D&md5=6c6005f83360b2965ca9b58429316390CAS | 24680670PubMed |

[8]  Sturgeon, A. et al. (2013) Metagenomic analysis of the canine oral cavity as revealed by high-throughput pyrosequencing of the 16S rRNA gene. Vet. Microbiol. 162, 891–898.
Metagenomic analysis of the canine oral cavity as revealed by high-throughput pyrosequencing of the 16S rRNA gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWit73K&md5=59eadc3f435e630c30232093eec4849cCAS | 23228621PubMed |

[9]  Dewhirst, F.E. et al. (2010) The human oral microbiome. J. Bacteriol. 192, 5002–5017.
The human oral microbiome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCitbrP&md5=c33667927bc198989c9485de67a54bcfCAS | 20656903PubMed |

[10]  Antiabong, J.F. et al. (2013) The oral microbial community of gingivitis and lumpy jaw in captive macropods. Res. Vet. Sci. 95, 996–1005.
The oral microbial community of gingivitis and lumpy jaw in captive macropods.Crossref | GoogleScholarGoogle Scholar | 24012349PubMed |

[11]  Beighton, D. and Miller, W.A. (1977) A microbiological study of normal flora of macropod dental plaque. J. Dent. Res. 56, 995–1000.
A microbiological study of normal flora of macropod dental plaque.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1c%2Fks1Ciug%3D%3D&md5=dbe398f65c0595e9495b847a3166de25CAS | 270499PubMed |

[12]  Dent, V.E. (1979) The bacteriology of dental plaque from a variety of zoo-maintained mammalian species. Arch. Oral Biol. 24, 277–282.
The bacteriology of dental plaque from a variety of zoo-maintained mammalian species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c%2FmsVCqug%3D%3D&md5=d9787c863ef6ebc7e4a5cc48063962ecCAS | 116634PubMed |

[13]  Samuel, J.L. (1982) The normal flora of the mouths of macropods (Marsupialia: macropodidae). Arch. Oral Biol. 27, 141–146.
The normal flora of the mouths of macropods (Marsupialia: macropodidae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL383gsFCqsA%3D%3D&md5=166eb0df3d6d12bea711f62d98e6109bCAS | 7044349PubMed |

[14]  Mikkelsen, D. et al. (2008) Phylogenetic analysis of Porphyromonas species isolated from the oral cavity of Australian marsupials. Environ. Microbiol. 10, 2425–2432.
Phylogenetic analysis of Porphyromonas species isolated from the oral cavity of Australian marsupials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSksLjO&md5=1a30db8bef0e7a9d32e82a785982ca40CAS | 18564186PubMed |

[15]  Borland, D. et al. (2012) Oral necrobacillosis (‘lumpy jaw’) in a free-ranging population of eastern grey kangaroos (Macropus giganteus) in Victoria. Aust. Mammal. 34, 29–35.
Oral necrobacillosis (‘lumpy jaw’) in a free-ranging population of eastern grey kangaroos (Macropus giganteus) in Victoria.Crossref | GoogleScholarGoogle Scholar |

[16]  Bakal-Weiss, M. et al. (2010) Use of a sustained release chlorhexidine varnish as treatment of oral necrobacillosis in Macropus spp. J. Zoo Wildl. Med. 41, 371–373.
Use of a sustained release chlorhexidine varnish as treatment of oral necrobacillosis in Macropus spp.Crossref | GoogleScholarGoogle Scholar | 20597238PubMed |

[17]  Butler, R. (1981) Epidemiology and management of ‘lumpy jaw’ in macropods. In Fourth International Conference on the Wildlife Diseases Association. Sydney, Australia.

[18]  Samuel, J.L. (1983) Jaw disease in macropod marsupials: bacterial flora isolated from lesions and from the mouths of affected animals. Vet. Microbiol. 8, 373–387.
Jaw disease in macropod marsupials: bacterial flora isolated from lesions and from the mouths of affected animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c%2Fks1KhtA%3D%3D&md5=70ff1b22abfa4866af3663f45548fa09CAS | 6636509PubMed |

[19]  Antiabong, J.F. et al. (2013) A molecular survey of a captive wallaby population for periodontopathogens and the co-incidence of Fusobacterium necrophorum subspecies necrophorum with periodontal diseases. Vet. Microbiol. 163, 335–343.
A molecular survey of a captive wallaby population for periodontopathogens and the co-incidence of Fusobacterium necrophorum subspecies necrophorum with periodontal diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislemsLg%3D&md5=fd667febc0530038a60ad66a79480a29CAS | 23428381PubMed |

[20]  Chhour, K.L. et al. (2010) An observational study of the microbiome of the maternal pouch and saliva of the tammar wallaby, Macropus eugenii, and of the gastrointestinal tract of the pouch young. Microbiology 156, 798–808.
An observational study of the microbiome of the maternal pouch and saliva of the tammar wallaby, Macropus eugenii, and of the gastrointestinal tract of the pouch young.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFOksb8%3D&md5=7ab3405474734a22356c03856756cbbcCAS | 19833775PubMed |