Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Nanoparticle sample preparation and mass spectrometry for rapid diagnosis of microbial infections

Andrea Ranzoni A , Hanna Sidjabat B and Matthew A Cooper A C
+ Author Affiliations
- Author Affiliations

A Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia

B University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia

C Email: m.cooper@uq.edu.au

Microbiology Australia 34(4) 170-174 https://doi.org/10.1071/MA13057
Published: 10 October 2013

Abstract

In vitro diagnostics encompasses a wide range of medical devices and assays, which aim to provide reliable and accurate diagnosis of disease. This can be achieved by detecting a target, for example, a protein biomarker or a pathogen bacterium, and/or host factors such as cytokines induced in an inflammatory response. Detection involves an assay to capture target molecules and distinguish them from other substances in an ex vivo sample matrix. Selective capturing can be achieved using affinity probes, such as antibodies or small molecules, often coupled to a label, for example, an enzyme or a particle, to facilitate detection in complex matrixes (Figure 1). Today, the combination of nanoparticle approaches for sample preparation/concentration, with high information content, rapid analysis by mass spectrometry, is changing the way we detect and identify pathogenic bacteria in the diagnosis of microbial infection.


References

[1]  Seng, P. et al. (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 49, 543–551.
Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOmsrzM&md5=cde6b680b1495ae9ccaa5701a434ec92CAS | 19583519PubMed |

[2]  Köhling, H.L. et al. (2012) Direct identification of bacteria in urine samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and relevance of defensins as interfering factors. J. Med. Microbiol. 61, 339–344.
Direct identification of bacteria in urine samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and relevance of defensins as interfering factors.Crossref | GoogleScholarGoogle Scholar | 22275503PubMed |

[3]  Ferreira, L. et al. (2011) Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method. Clin. Microbiol. Infect. 17, 1007–1012.
Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2hsrjF&md5=a58b9bd1a25fff9f874069c7a97b2ad5CAS | 20718803PubMed |

[4]  Chou, T.-C. et al. (2011) Rapid and specific influenza virus detection by functionalized magnetic nanoparticles and mass spectrometry. J. Nanobiotechnology 9, 52.
Rapid and specific influenza virus detection by functionalized magnetic nanoparticles and mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFyqsb0%3D&md5=79c83193f56c79221aea4d0bcf86dba1CAS | 22088100PubMed |

[5]  Chen, S. et al. (2013) Impurities preparation of sodium tanshinone IIA sulfonate by high-speed counter-current chromatography and identification by liquid chromatography/multistage tandem mass spectrometry. J. Chromatogr. A 1288, 28–34.
Impurities preparation of sodium tanshinone IIA sulfonate by high-speed counter-current chromatography and identification by liquid chromatography/multistage tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt12qsbs%3D&md5=f12840ab207af7893c2ab31f0252a43aCAS | 23522260PubMed |

[6]  Agrawal G.K. et al 2013 Biomarker discovery and applications for foods and beverages: proteomics to nanoproteomics. J. Proteomics 10.1016/j.jprot.2013.04.014

[7]  Schrand, A.M. et al. (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdisciplinary Reviews–Nanomedicine and Nanobiotechnology 2, 544–568.
Metal-based nanoparticles and their toxicity assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOnsrbJ&md5=48beb9ee7a2a6b932c45abef3f6fcde1CAS | 20681021PubMed |

[8]  Pappert, G. et al. (2010) Immunomagnetic nanoparticle-based sandwich chemiluminescence-ELISA for the enrichment and quantification of E. coli. Microchimica Acta 168, 1–8.
Immunomagnetic nanoparticle-based sandwich chemiluminescence-ELISA for the enrichment and quantification of E. coli.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WksLg%3D&md5=c3e35dce5bb68bd40040e5300b2d2181CAS |

[9]  Bagwe, R.P. et al. (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22, 4357–4362.
Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivF2qtbY%3D&md5=2fce6e86314ff42503f2b31f7b2f2029CAS | 16618187PubMed |

[10]  Thomson, D.A.C. et al. (2012) Oligonucleotide and polymer functionalized nanoparticles for amplification-free detection of DNA. Biomacromolecules 13, 1981–1989.
Oligonucleotide and polymer functionalized nanoparticles for amplification-free detection of DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1yiurg%3D&md5=afb71fa3b311b6dbdb77a02cc53c72e3CAS |

[11]  Gu, H. et al. (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. , 941–949.
Biofunctional magnetic nanoparticles for protein separation and pathogen detection.Crossref | GoogleScholarGoogle Scholar |

[12]  Hall, D.A. et al. (2010) GMR biosensor arrays: a system perspective. Biosens. Bioelectron. 25, 2051–2057.
GMR biosensor arrays: a system perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Kht7w%3D&md5=f043a1a435a76b38a5461e1a11bbc48aCAS | 20207130PubMed |

[13]  Haun, J.B. et al. (2010) Magnetic nanoparticle biosensors. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology 2, 291–304.
Magnetic nanoparticle biosensors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlWgtLo%3D&md5=494740e249d66ac53ef59af4345dffdaCAS | 20336708PubMed |

[14]  Osterfeld, S.J. et al. (2008) Multiplex protein assays based on real-time magnetic nanotag sensing. Proc. Natl. Acad. Sci. USA 105, 20 637–20 640.
Multiplex protein assays based on real-time magnetic nanotag sensing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1GmsA%3D%3D&md5=567d6d25ee5b9fb6ac012d3b4c5f6e5bCAS |

[15]  Maalouf, R. et al. (2008) Comparison of two innovative approaches for bacteria detection: paramagnetic nanoparticle and self assembles multilayer processes. Microchimica Acta 163, 157–161.
Comparison of two innovative approaches for bacteria detection: paramagnetic nanoparticle and self assembles multilayer processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWltb7L&md5=d9749867e6d171ca0b52d9bfb7f0ba87CAS |

[16]  Xu, L. et al. (2008) Giant magnetoresistive biochip for DNA detection and HPV genotyping. Biosens. Bioelectron. 24, 99–103.
Giant magnetoresistive biochip for DNA detection and HPV genotyping.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlCrsrY%3D&md5=4048021c1b672e0ab5976add24e777b7CAS | 18457945PubMed |

[17]  Mujika, M. et al. (2009) Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network. Biosens. Bioelectron. 24, 1253–1258.
Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVersQ%3D%3D&md5=ed7aced7e23f07bfafa212807deed4e5CAS | 18760584PubMed |

[18]  Koets, M. et al. (2009) Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor. Biosens. Bioelectron. 24, 1893–1898.
Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Oltrw%3D&md5=a5c9f389edb91cd4fe495fbe9a04ed13CAS | 19028086PubMed |

[19]  Skewis, L.R. et al. (2013) Nuclear magnetic resonance nanotechnology: applications in clinical diagnostics and monitoring. In Encyclopedia of Analytical Chemistry, pp. 1–24, John Wiley & Sons, Ltd.

[20]  Chung, H.J. et al. (2013) A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat. Nanotechnol. 8, 369–375.
A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVeitLc%3D&md5=17124284a43d963e19723d4a8e45d4bcCAS | 23644570PubMed |

[21]  Chekina, N. et al. (2011) Fluorescent magnetic nanoparticles for biomedical applications. J. Mater. Chem. 21, 7630–7639.
Fluorescent magnetic nanoparticles for biomedical applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFent7c%3D&md5=848449f9f190be0d856294395d4ea310CAS |

[22]  Baudry, J. et al. (2006) Acceleration of the recognition rate between grafted ligands and receptors with magnetic forces. Proc. Natl. Acad. Sci. USA 103, 16 076–16 078.
Acceleration of the recognition rate between grafted ligands and receptors with magnetic forces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Wht77P&md5=7f7cc4027d253a01e4887ce5099f6e22CAS |

[23]  Park, S.Y. et al. (2010) Magneto-optical biosensing platform based on light scattering from self-assembled chains of functionalized rotating magnetic beads. Nano Lett. 10, 446–451.
Magneto-optical biosensing platform based on light scattering from self-assembled chains of functionalized rotating magnetic beads.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WjsLbI&md5=bf9a774cf7013886fe1e998d68a18e05CAS | 20038151PubMed |

[24]  Ranzoni, A. et al. (2011) Frequency-selective rotation of two-particle nanoactuators for rapid and sensitive detection of biomolecules. Nano Lett. 11, 2017–2022.
Frequency-selective rotation of two-particle nanoactuators for rapid and sensitive detection of biomolecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFalurw%3D&md5=70bfb3112b4fc18594ef0ab42638842cCAS | 21449535PubMed |

[25]  Ranzoni, A. et al. (2012) One-step homogeneous magnetic nanoparticle immunoassay for biomarker detection directly in blood plasma. ACS Nano 6, 3134–3141.
One-step homogeneous magnetic nanoparticle immunoassay for biomarker detection directly in blood plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Clt7g%3D&md5=eba25326d47507ab6467b20892c413f0CAS | 22414272PubMed |

[26]  Bruls, D.M. et al. (2009) Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles. Lab Chip 9, 3504–3510.
Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOhtbvK&md5=ce6cfaf3c78c00672f9d53a0b383e88dCAS | 20024029PubMed |

[27]  Zahavy, E. et al. (2012) Application of nanoparticles for the detection and sorting of pathogenic bacteria by flow-cytometry. Adv. Exp. Med. Biol. 733, 23–36.
Application of nanoparticles for the detection and sorting of pathogenic bacteria by flow-cytometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWhtLbO&md5=caf54627b3a12bb062cec41dcc4cb32bCAS | 22101709PubMed |

[28]  Wang, C. et al. (2011) Highly sensitive rapid chemiluminescent immunoassay using the DNAzyme label for signal amplification. Analyst (Lond.) 136, 4295–4300.
Highly sensitive rapid chemiluminescent immunoassay using the DNAzyme label for signal amplification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ags7jI&md5=b46c18b80ff950d443ff86012c4d8d66CAS |

[29]  Gu, H.W. et al. (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 3, 1261–1263.
Presenting vancomycin on nanoparticles to enhance antimicrobial activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFOitr0%3D&md5=f9ae5423367581859c435b9ba923aee2CAS |

[30]  Gu, H.W. et al. (2003) Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J. Am. Chem. Soc. 125, 15702–15703.
Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOgtbk%3D&md5=8ac3a5f6f6f2fd02d882ba1f1ef78552CAS |

[31]  Gao, J. et al. (2006) Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Adv. Mater. 18, 3145–3148.
Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1ChsA%3D%3D&md5=ef1dbc31ad56f8369e1c3915f8b9f211CAS |

[32]  Tan, K.E. et al. (2012) Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J. Clin. Microbiol. 50, 3301–3308.
Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38fkvFCjtw%3D%3D&md5=723acefdcf83f6f3ef57ae75e9c96622CAS | 22855510PubMed |

[33]  Bizzini, A. et al. (2010) Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J. Clin. Microbiol. 48, 1549–1554.
Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1Cgtbg%3D&md5=0540db70567cd53bf1ff3c4f79da0693CAS | 20220166PubMed |

[34]  Warscheid, B. and Fenselau, C. (2004) A targeted proteomics approach to the rapid identification of bacterial cell mixtures by matrix-assisted laser desorption/ionization mass spectrometry. Proteomics 4, 2877–2892.
A targeted proteomics approach to the rapid identification of bacterial cell mixtures by matrix-assisted laser desorption/ionization mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVynsbw%3D&md5=ba0e803e1675029a7c8ff9d5adb6fd1aCAS | 15378756PubMed |

[35]  Hrabak, J. et al. (2012) Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 50, 2441–2443.
Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCmsLvK&md5=a53c071ed2f70d1b4beb2ebab72dac57CAS | 22553235PubMed |

[36]  Hrabak, J. et al. (2011) Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 49, 3222–3227.
Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Gltb7N&md5=3cd29887bbfac52452da81ab4dd02db0CAS | 21775535PubMed |

[37]  Dortet, L. et al. (2012) Rapid detection of carbapenemase-producing Pseudomonas spp. J. Clin. Microbiol. 50, 3773–3776.
Rapid detection of carbapenemase-producing Pseudomonas spp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSnsbfP&md5=dc1cc48fe7494274bd98e2dcd037f3d9CAS | 22972829PubMed |

[38]  Nordmann, P. et al. (2012) Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis. 18, 1503–1507.
Rapid detection of carbapenemase-producing Enterobacteriaceae.Crossref | GoogleScholarGoogle Scholar | 22932472PubMed |

[39]  Dortet, L. et al. (2012) Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrob. Agents Chemother. 56, 6437–6440.
Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKls7vO&md5=c6ab649bd6cc5f5e58399ea825001ef5CAS | 23070158PubMed |

[40]  Neely, L.A. et al. (2013) T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Science Translational Medicine 5, 182ra54.
| 1:CAS:528:DC%2BC3sXnsFWktbc%3D&md5=794ed0f47b74e5ffd28da6dd8bfa941bCAS | 23616121PubMed |