Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

The importance of resolving biogeographic patterns of microbial microdiversity

Alexander B Chase A B and Jennifer BH Martiny A C
+ Author Affiliations
- Author Affiliations

A Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA

B Email: abchase@uci.edu

C Email: jmartiny@uci.edu

Microbiology Australia 39(1) 5-8 https://doi.org/10.1071/MA18003
Published: 19 February 2018

Abstract

For centuries, ecologists have used biogeographic patterns to test the processes governing the assembly and maintenance of plant and animal communities. Similarly, evolutionary biologists have used historical biogeography (e.g. phylogeography) to understand the importance of geological events as barriers to dispersal that shape species distributions. As the field of microbial biogeography initially developed, the utilisation of highly conserved marker genes, such as the 16S ribosomal RNA gene, stimulated investigations into the biogeographic patterns of the microbial community as a whole. Here, we propose that we should now consider the biogeographic patterns of microdiversity, the fine-scale genetic diversity observed within a traditional ribosomal-based operational taxonomic unit.


References

[1]  Wiens, J.J. and Donoghue, M.J. (2004) Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644.
Historical biogeography, ecology and species richness.Crossref | GoogleScholarGoogle Scholar |

[2]  Cho, J.-C. and Tiedje, J.M. (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl. Environ. Microbiol. 66, 5448–5456.
Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsVygs7o%3D&md5=40706cf9c516277e9ae1f67c2c5458e6CAS |

[3]  Giovannoni, S.J. et al. (1996) 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the green non-sulfur bacteria. Proc. Natl. Acad. Sci. USA 93, 7979–7984.
16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the green non-sulfur bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFSruro%3D&md5=e8f9ab6cebbe7c73e46d8f93e355e633CAS |

[4]  Fierer, N. and Jackson, R.B. (2006) The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631.
The diversity and biogeography of soil bacterial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOiurY%3D&md5=2b72a23ed5ece3cd6bb6d726763c9ad7CAS |

[5]  Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214.
Structure, function and diversity of the healthy human microbiome.Crossref | GoogleScholarGoogle Scholar |

[6]  Hanson, C.A. et al. (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506.
Beyond biogeographic patterns: processes shaping the microbial landscape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFCjtrk%3D&md5=d403e755576bb057b352e6622924cd85CAS |

[7]  Martiny, J.B.H. et al. (2006) Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112.
Microbial biogeography: putting microorganisms on the map.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVyhsA%3D%3D&md5=d1cb8102e0247e2d397a60828d7bdeecCAS |

[8]  Hubbell, S.P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press.

[9]  McGill, B.J. et al. (2006) Empirical evaluation of neutral theory. Ecology 87, 1411–1423.
Empirical evaluation of neutral theory.Crossref | GoogleScholarGoogle Scholar |

[10]  Ochman, H. et al. (1999) Calibrating bacterial evolution. Proc. Natl. Acad. Sci. USA 96, 12638–12643.
Calibrating bacterial evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1yqs7g%3D&md5=4b6b1300b5379e551b73142a158735a0CAS |

[11]  Pereira, S.L. and Baker, A.J. (2006) A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol. Biol. Evol. 23, 1731–1740.
A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVWhtbg%3D&md5=ec1b1712249a97882e73be89ebe794aaCAS |

[12]  Moore, L.R. et al. (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393, 464–467.
Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs1KnsLY%3D&md5=ce2397eeaaf9998cd245abf6b1296f68CAS |

[13]  Jaspers, E. and Overmann, J. (2004) Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl. Environ. Microbiol. 70, 4831–4839.
Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1eksr4%3D&md5=89d02a6f52c24ed2aa7f34a4ba9b8cefCAS |

[14]  Thompson, J.R. et al. (2005) Genotypic diversity within a natural coastal bacterioplankton population. Science 307, 1311–1313.
Genotypic diversity within a natural coastal bacterioplankton population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFOqt7o%3D&md5=e9b8e3c2c9a1be0a7e96c80fc4cd4f5aCAS |

[15]  Lan, Y. et al. (2016) Marker genes that are less conserved in their sequences are useful for predicting genome-wide similarity levels between closely related prokaryotic strains. Microbiome 4, 18.
Marker genes that are less conserved in their sequences are useful for predicting genome-wide similarity levels between closely related prokaryotic strains.Crossref | GoogleScholarGoogle Scholar |

[16]  Larkin, A.A. and Martiny, A.C. (2017) Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environ. Microbiol. Rep. 9, 55–70.
Microdiversity shapes the traits, niche space, and biogeography of microbial taxa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXksVSqtb8%3D&md5=f4e5d5e37c376b923df372f064a712e0CAS |

[17]  Johnson, Z.I. et al. (2006) Partitioning among Prochlorococcus ecotypes along environmental gradients. Science 311, 1737–1740.
Partitioning among Prochlorococcus ecotypes along environmental gradients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1equrw%3D&md5=f6bf55264aa0dca93fc0e54f7636cc85CAS |

[18]  Martiny, A.C. et al. (2009) Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environ. Microbiol. 11, 823–832.
Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus.Crossref | GoogleScholarGoogle Scholar |

[19]  Martiny, J.B.H. et al. (2015) Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323.
Microbiomes in light of traits: a phylogenetic perspective.Crossref | GoogleScholarGoogle Scholar |

[20]  Chase, A.B. et al. (2017) Microdiversity of an abundant terrestrial bacterium encompasses extensive variation in ecologically relevant traits. MBio 8, e01809-17.
Microdiversity of an abundant terrestrial bacterium encompasses extensive variation in ecologically relevant traits.Crossref | GoogleScholarGoogle Scholar |

[21]  Flombaum, P. et al. (2013) Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. USA 110, 9824–9829.
Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOrtL7I&md5=4450a18421592d91a717aba83a88d592CAS |

[22]  Martiny, A.C. et al. (2006) Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc. Natl. Acad. Sci. USA 103, 12552–12557.
Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xos1Kku7w%3D&md5=d24044574697149e8a1f1884dc2b972cCAS |

[23]  Andam, C.P. et al. (2016) A latitudinal diversity gradient in terrestrial bacteria of the genus Streptomyces. MBio 7, e02200-15.
A latitudinal diversity gradient in terrestrial bacteria of the genus Streptomyces.Crossref | GoogleScholarGoogle Scholar |

[24]  Whitaker, R.J. et al. (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301, 976–978.
Geographic barriers isolate endemic populations of hyperthermophilic archaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1elsLc%3D&md5=ed31a1207956e964391576f697126791CAS |

[25]  Cadillo-Quiroz, H. et al. (2012) Patterns of gene flow define species of thermophilic Archaea. PLoS Biol. 10, e1001265.
Patterns of gene flow define species of thermophilic Archaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVaqu7Y%3D&md5=a71580e99ba92f7f42f8a556aec172c9CAS |

[26]  Choudoir, M.J. et al. (2016) Latitude delineates patterns of biogeography in terrestrial Streptomyces. Environ. Microbiol. 18, 4931–4945.
Latitude delineates patterns of biogeography in terrestrial Streptomyces.Crossref | GoogleScholarGoogle Scholar |

[27]  Shapiro, B.J. et al. (2012) Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48–51.
Population genomics of early events in the ecological differentiation of bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvV2rs7w%3D&md5=404eeb1a049e3b2226b26d8431bf133fCAS |

[28]  Hehemann, J.-H. et al. (2016) Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860.
Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFGrtb7K&md5=1224fa8aaadb448bbd2abfd33eb10a50CAS |

[29]  Polz, M.F. et al. (2013) Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 29, 170–175.
Horizontal gene transfer and the evolution of bacterial and archaeal population structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovV2iug%3D%3D&md5=877a31f43b0e0ff1d960abf38ff084ffCAS |

[30]  Malmstrom, R.R. et al. (2013) Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis. ISME J. 7, 184–198.
Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOrsbfE&md5=60ae10b5019e549ef395e678ae3f3986CAS |