Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Microbiology Australia Microbiology Australia Society
Microbiology Australia, bringing Microbiologists together
RESEARCH ARTICLE

Bioavailability and biodegradation of polycyclic aromatic hydrocarbons

Albert L Juhasz
+ Author Affiliations
- Author Affiliations

Centre for Environmental Risk Assessment and Remediation (CERAR)
University of South Australia and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE)
Mawson Lakes, Adelaide
SA 5095, Australia
Tel: +61 8 8302 5045
Fax: +61 8 8302 3057
Email: Albert.Juhasz@unisa.edu.au

Microbiology Australia 35(4) 199-200 https://doi.org/10.1071/MA14064
Published: 30 October 2014

Abstract

Contaminant bioavailability plays an influential role in the efficacy of polycyclic aromatic hydrocarbon biodegradation.


References

[1]  Juhasz, A.L. and Naidu, R. (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Internat. Biodeterior. Biodeg. 45, 57–88.
Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFaksbk%3D&md5=51d5ae677fa983c165330e18237da254CAS |

[2]  ATSDR (1995) Agency for Toxic Substances and Disease Registry, Toxicological profile for polycyclic aromatic hydrocarbons. Atlanta, GA, US Department of Health and Human Services.

[3]  Johnsen, A.R. et al. (2005) Principles of microbial PAH-degradation in soil. Environ. Pollut. 133, 71–84.
Principles of microbial PAH-degradation in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFylurc%3D&md5=73000b39ea15d41253852f8b0ead6cfdCAS | 15327858PubMed |

[4]  Semple, K.T. et al. (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur. J. Soil Sci. 54, 809–818.
Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlOn&md5=5a5532409f0aabb816e30461d15c16d2CAS |

[5]  Pignatello, J.J. and Xing, B. (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 30, 1–11.
Mechanisms of slow sorption of organic chemicals to natural particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsFyrsr0%3D&md5=30eb9803fc3bac6f7336c516e1a22103CAS |

[6]  Reid, B.J. et al. (2000) Bioavailability of persistent organic pollutants in soils and sediments – a perspective on mechanisms, consequences and assessment. Environ. Pollut. 108, 103–112.
Bioavailability of persistent organic pollutants in soils and sediments – a perspective on mechanisms, consequences and assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1ahs7s%3D&md5=d814594e68672819de18b801e4a78b89CAS | 15092971PubMed |

[7]  Juhasz, A.L. et al. (2005) Predicting the efficacy of polycyclic aromatic hydrocarbon bioremediation in creosote-contaminated soil using bioavailability assays. Bioremediat. J. 9, 99–114.
Predicting the efficacy of polycyclic aromatic hydrocarbon bioremediation in creosote-contaminated soil using bioavailability assays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFaks7%2FL&md5=d37516c7a0ccdc99fde65417651d2d69CAS |

[8]  Mahmoudi, N. et al. (2013) Assessing limitations for PAH biodegradation in long-term contaminated soils using bioaccessibility assays. Water Air Soil Pollut. 224, 1411.
Assessing limitations for PAH biodegradation in long-term contaminated soils using bioaccessibility assays.Crossref | GoogleScholarGoogle Scholar |

[9]  Rostami, I. and Juhasz, A.L. (2013) Bioaccessibility-based predictions for estimating PAH biodegradation efficacy – comparison of model predictions and measured endpoints. Internat. Biodeterior. Biodeg. 85, 323–330.
Bioaccessibility-based predictions for estimating PAH biodegradation efficacy – comparison of model predictions and measured endpoints.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Oru7jO&md5=b22da043f9905408ffc235aa06a44b29CAS |