300 million years apart: the extreme case of macromorphological skeletal convergence between deltocyathids and a turbinoliid coral (Anthozoa, Scleractinia)
C. F. Vaga A B C * , I. G. L. Seiblitz B C , J. Stolarski D , K. C. C. Capel B E , A. M. Quattrini A , S. D. Cairns A , D. Huang F G , R. Z. B. Quek G H and M. V. Kitahara A B C *A
B
C
D
E
F
G
H
Handling Editor: Allen Collins
Abstract
The integration of morphological and molecular lines of evidence has enabled the family Deltocyathidae to be erected to accommodate Deltocyathus species that were previously ascribed to the family Caryophylliidae. However, although displaying the same morphological characteristics as other species of Deltocyathus, molecular data suggested that D. magnificus was phylogenetically distant from Deltocyathidae, falling within the family Turbinoliidae instead. To elucidate the enigmatic evolutionary history of this species and skeletal microstructural features, the phylogenetic relationships of Deltocyathidae and Turbinoliidae were investigated using nuclear ultraconserved and exon loci and complete mitochondrial genomes. Both nuclear and mitochondrial phylogenomic reconstructions confirmed the position of D. magnificus within turbinolids. Furthermore, a novel mitochondrial gene order was uncovered for Deltocyathidae species. This gene order was not present in Turbinoliidae or in D. magnificus that both have the scleractinian canonical gene order, further indicating the taxonomic utility of mitochondrial gene order. D. magnificus is therefore formally moved to the family Turbinoliidae and accommodated in a new genus (Dennantotrochus Kitahara, Vaga & Stolarski, gen. nov.). Surprisingly, turbinolids and deltocyathids do not differ in microstructural organisation of the skeleton that consists of densely packed, individualised rapid accretion deposits and thickening deposits composed of fibres perpendicular to the skeleton surface. Therefore, although both families are clearly evolutionarily divergent, macromorphological features indicate a case of skeletal convergence while these may still share conservative biomineralisation mechanisms.
ZooBank: urn:lsid:zoobank.org:pub:5F1C0E25-3CC6-4D1F-B1F0-CD9D0014678E
Keywords: Deltocyathidae, Dennantotrochus, mitochondrial genome, phylogeny, stony corals, systematics, Turbinoliidae, ultraconserved elements.
References
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215(3), 403-410.
| Crossref | Google Scholar | PubMed |
Anisimova M, Gil M, Dufayard J-F, Dessimoz C, Gascuel O (2011) Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Systematic Biology 60, 685-699.
| Crossref | Google Scholar | PubMed |
Arrigoni R, Terraneo TI, Galli P, Benzoni F (2014) Lobophylliidae (Cnidaria, Scleractinia) reshuffled: pervasive non-monophyly at genus level. Molecular Phylogenetics and Evolution 73, 60-64.
| Crossref | Google Scholar | PubMed |
Arrigoni R, Huang D, Berumen ML, Budd AF, Montano S, Richards ZT, Terraneo TI, Benzoni F (2021) Integrative systematics of the scleractinian coral genera Caulastraea, Erythrastrea and Oulophyllia. Zoologica Scripta 50(4), 509-527.
| Crossref | Google Scholar |
Arrigoni R, Stolarski J, Terraneo TI, Hoeksema BW, Berumen ML, Payri C, Montano S, Benzoni F (2023) Phylogenetics and taxonomy of the scleractinian coral family Euphylliidae. Contributions to Zoology 92(2), 130-171.
| Crossref | Google Scholar |
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19(5), 455-477.
| Crossref | Google Scholar | PubMed |
Bavestrello G, Cattaneo-Vietti R, Di Camillo CG, Bo M (2012) Helicospiral growth in the whip black coral Cirrhipathes sp. (Antipatharia, Antipathidae). The Biological Bulletin 222(1), 17-25.
| Crossref | Google Scholar | PubMed |
Benzoni F, Arrigoni R, Stefani F, Stolarski J (2012) Systematics of the coral genus Craterastrea (Cnidaria, Anthozoa, Scleractinia) and description of a new family through combined morphological and molecular analyses. Systematics and Biodiversity 10(4), 417-433.
| Crossref | Google Scholar |
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69(2), 313-319.
| Crossref | Google Scholar | PubMed |
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114-2120.
| Crossref | Google Scholar | PubMed |
Bridge TCL, Cowman PF, Quattrini AM, Bonito VE, Sinniger F, Harii S, Head CEI, Hung JY, Halafihi T, Rongo T, Baird AH (2023) A tenuis relationship: traditional taxonomy obscures systematics and biogeography of the ‘Acropora tenuis’ (Scleractinia: Acroporidae) species complex. Zoological Journal of the Linnean Society 198, zlad062.
| Crossref | Google Scholar |
Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zoological Journal of the Linnean Society 166, 465-529.
| Crossref | Google Scholar |
Cairns SD (1997) A generic revision and phylogenetic analysis of the Turbinoliidae (Cnidaria: Scleractinia). Smithsonian Contribution to Zoology 591, 1-55.
| Crossref | Google Scholar |
Campoy AN, Addamo AM, Machordom A, Meade A, Rivadeneira MM, Hernández CE, Venditti C (2020) The origin and correlated evolution of symbiosis and coloniality in scleractinian corals. Frontiers in Marine Science 7, 461.
| Crossref | Google Scholar |
Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17(4), 540-552.
| Crossref | Google Scholar | PubMed |
Celis JS, Edgell DR, Stelbrink B, Wibberg D, Hauffe T, Blom J, Kalinowski J, Wilke T, Palazzo AF (Ed.) (2017) Evolutionary and biogeographical implications of degraded LAGLIDADG endonuclease functionality and group I intron occurrence in stony corals (Scleractinia) and mushroom corals (Corallimorpharia). PLoS ONE 12(3), e0173734.
| Crossref | Google Scholar | PubMed |
Chen CA, Odorico DM, ten Lohuis M, et al. (1995) Systematic relationships within the Anthozoa (Cnidaria: Anthozoa) using the 5′-end of the 28S rDNA. Molecular Phylogenetics and Evolution 4, 175-183.
| Crossref | Google Scholar | PubMed |
Chen C, Chiou CY, Dai CF, Chen CA (2008) Unique mitogenomic features in the scleractinian family Pocilloporidae (Scleractinia: Astrocoeniina). Marine Biotechnology 10(5), 538-553.
| Crossref | Google Scholar | PubMed |
Chuang Y, Kitahara MV, Fukami H, Tracey D, Miller DJ, Chen CA (2017) Loss and gain of group I introns in the mitochondrial cox1 gene of the Scleractinia (Cnidaria; Anthozoa). Zoological Studies 56, 9.
| Crossref | Google Scholar | PubMed |
Cowman PF, Quattrini AM, Bridge TCL, Watkins-Colwell GJ, Fadli N, Grinblat M, Roberts TE, McFadden CS, Miller DJ, Baird AH (2020) An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives. Molecular Phylogenetics and Evolution 153, 106944.
| Crossref | Google Scholar | PubMed |
Cuif J-P, Lecointre G, Perrin C, et al. (2003) Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zoologica Scripta 32, 459-473.
| Crossref | Google Scholar |
Derkarabetian S, Benavides LR, Giribet G (2019) Sequence capture phylogenomics of historical ethanol‐preserved museum specimens: Unlocking the rest of the vault. Molecular Ecology Resources 19(6), 1531-1544.
| Crossref | Google Scholar | PubMed |
Duchêne DA, Mather N, van der Wal C, Ho SYW (2021) Excluding loci with substitution saturation improves inferences from phylogenomic data. Systematic Biology 71, 676-689.
| Crossref | Google Scholar |
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5), 1792-1797.
| Crossref | Google Scholar | PubMed |
Emblem Å, Karlsen BO, Evertsen J, Johansen SD (2011) Mitogenome rearrangement in the cold-water scleractinian coral Lophelia pertusa (Cnidaria, Anthozoa) involves a long-term evolving group I intron. Molecular Phylogenetics and Evolution 61(2), 495-503.
| Crossref | Google Scholar | PubMed |
Erickson KL, Pentico A, Quattrini AM, McFadden CS (2021) New approaches to species delimitation and population structure of anthozoans: two case studies of octocorals using ultraconserved elements and exons. Molecular Ecology Resources 21(1), 78-92.
| Crossref | Google Scholar | PubMed |
Faircloth BC (2016) PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32(5), 786-788.
| Crossref | Google Scholar | PubMed |
Flot JF, Blanchot J, Charpy L, Cruaud C, Licuanan WY, Nakano Y, Payri C, Tillier S (2011) Incongruence between morphotypes and genetically delimited species in the coral genus Stylophora: phenotypic plasticity, morphological convergence, morphological stasis or interspecific hybridization? BMC Ecology 11(1), 22.
| Crossref | Google Scholar |
Flot JF, Dahl M, André C (2013) Lophelia pertusa corals from the Ionian and Barents seas share identical nuclear ITS2 and near-identical mitochondrial genome sequences. BMC Research Notes 6, 144.
| Crossref | Google Scholar | PubMed |
Fukami H, Chen CA, Budd AF, et al. (2008) Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (order Scleractinia, class Anthozoa, phylum Cnidaria). PLoS ONE 3, e3222.
| Crossref | Google Scholar | PubMed |
Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics 17(6), 333-351.
| Crossref | Google Scholar | PubMed |
Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Research 41(13), e129.
| Crossref | Google Scholar | PubMed |
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518-522.
| Crossref | Google Scholar | PubMed |
Huang D, Meier R, Todd PA, Chou LM (2009) More evidence for pervasive paraphyly in scleractinian corals: systematic study of Southeast Asian Faviidae (Cnidaria; Scleractinia) based on molecular and morphological data. Molecular Phylogenetics and Evolution 50(1), 102-116.
| Crossref | Google Scholar | PubMed |
Huang D, Licuanan WY, Baird AH, Fukami H (2011) Cleaning up the ‘Bigmessidae’: molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evolutionary Biology 11(1), 37.
| Crossref | Google Scholar | PubMed |
Huang D, Benzoni F, Fukami H, Knowlton N, Smith ND, Budd AF (2014) Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zoological Journal of the Linnean Society 171, 277-355.
| Crossref | Google Scholar |
Janiszewska K, Stolarski J, Benzerara K, Meibom A, Mazur M, Kitahara MV, Cairns SD (2011) A unique skeletal microstructure of the deep‐sea micrabaciid scleractinian corals. Journal of Morphology 272(2), 191-203.
| Crossref | Google Scholar | PubMed |
Janiszewska K, Jaroszewicz J, Stolarski J (2013) Skeletal ontogeny in basal scleractinian micrabaciid corals. Journal of Morphology 274(3), 243-257.
| Crossref | Google Scholar | PubMed |
Janiszewska K, Stolarski J, Kitahara MV, Neuser RD, Mazur M (2015) Microstructural disparity between basal micrabaciids and other Scleractinia: new evidence from Neogene Stephanophyllia. Lethaia 48(3), 417-428.
| Crossref | Google Scholar |
Juszkiewicz DJ, White NE, Stolarski J, Benzoni F, Arrigoni R, Hoeksema BW, Wilson NG, Bunce M, Richards ZT (2022) Phylogeography of recent Plesiastrea (Scleractinia: Plesiastreidae) based on an integrated taxonomic approach. Molecular Phylogenetics and Evolution 172, 107469.
| Crossref | Google Scholar | PubMed |
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587-589.
| Crossref | Google Scholar | PubMed |
Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14), 3059-3066.
| Crossref | Google Scholar | PubMed |
Kitahara MV, Cairns SD (2021) Azooxanthellate Scleractinia (Cnidaria, Anthozoa) from New Caledonia. Mémoires du Muséum National d’Histoire Naturelle 215, 1-722.
| Google Scholar |
Kitahara MV, Cairns SD, Stolarski J, Blair D, Miller DJ (2010) A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS ONE 5, e11490.
| Crossref | Google Scholar | PubMed |
Kitahara MV, Stolarski J, Cairns SD, Benzoni F, Stake JL, Miller DJ (2012) The first modern solitary Agariciidae (Anthozoa, Scleractinia) revealed by molecular and microstructural analysis. Invertebrate Systematics 26(3), 303-315.
| Crossref | Google Scholar |
Kitahara MV, Cairns SD, Stolarski J, Miller DJ (2013) Deltocyathiidae, an early‐diverging family of robust corals (Anthozoa, Scleractinia). Zoologica Scripta 42(2), 201-212.
| Crossref | Google Scholar |
Kitahara MV, Lin M-F, Foret S, Huttley G, Miller DJ, Chen CA, Roberts JM (2014) The “naked coral” hypothesis revisited – evidence for and against scleractinian monophyly. PLoS ONE 9(4), e94774.
| Crossref | Google Scholar | PubMed |
Kulkarni P, Frommolt P (2017) Challenges in the setup of large-scale next-generation sequencing analysis workflows. Computational and Structural Biotechnology Journal 15, 471-477.
| Crossref | Google Scholar | PubMed |
Lin MF, Luzon KS, Licuanan WY, Ablan-Lagman MC, Chen CA (2011) Seventy-four universal primers for characterizing the complete mitochondrial genomes of scleractinian corals (Cnidaria: Anthozoa). Zoological Studies 50, 513-524.
| Google Scholar |
Lin MF, Kitahara MV, Tachikawa H, Fukami H, Miller DJ, Chen CA (2012) Novel organization of the mitochondrial genome in the deep-sea coral, Madrepora oculata (Hexacorallia, Scleractinia, Oculinidae) and its taxonomic implications. Molecular Phylogenetics and Evolution 65(1), 323-328.
| Crossref | Google Scholar | PubMed |
Lin M-F, Kitahara MV, Luo H, Tracey D, Geller J, Fukami H, Miller DJ, Chen CA (2014) Mitochondrial genome rearrangements in the Scleractinia/Corallimorpharia complex: implications for coral phylogeny. Genome Biology and Evolution 6(5), 1086-1095.
| Crossref | Google Scholar |
McFadden CS, Quattrini AM, Brugler MR, Cowman PF, Dueñas LF, Kitahara MV, Paz-García DA, Reimer JD, Rodríguez E (2021) Phylogenomics, origin, and diversification of Anthozoans (phylum Cnidaria). Systematic Biology 70(4), 635-647.
| Crossref | Google Scholar | PubMed |
McFadden CS, van Ofwegen LP, Quattrini AM (2022) Revisionary systematics of Octocorallia (Cnidaria: Anthozoa) guided by phylogenomics. Bulletin of the Society of Systematic Biologists 1(3), 87352.
| Crossref | Google Scholar |
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1), 268-274.
| Crossref | Google Scholar | PubMed |
Quattrini AM, Faircloth BC, Dueñas LF, Bridge TCL, Brugler MR, Calixto-Botía IF, et al. (2018) Universal target-enrichment baits for anthozoan (Cnidaria) phylogenomics: new approaches to long-standing problems. Molecular Ecology Resources 18(2), 281-295.
| Crossref | Google Scholar | PubMed |
Quattrini AM, Rodríguez E, Faircloth BC, Cowman PF, Brugler MR, Farfan GA, Hellberg ME, Kitahara MV, Morrison CL, Paz-García DA, Reimer JD, McFadden CS (2020) Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nature Ecology & Evolution 4(11), 1531-1538.
| Crossref | Google Scholar | PubMed |
Quattrini AM, Snyder KE, Purow-Ruderman R, Seiblitz IGL, Hoang J, Floerke N, Ramos NI, Wirshing HH, Rodriguez E, McFadden CS (2023) Mito-nuclear discordance within Anthozoa, with notes on unique properties of their mitochondrial genomes. Scientific Reports 13(1), 7443.
| Crossref | Google Scholar | PubMed |
Quek ZBR, Jain SS, Neo ML, Rouse GW, Huang D (2020) Transcriptome- based target- enrichment baits for stony corals (Cnidaria: Anthozoa: Scleractinia). Molecular Ecology Resources 20(3), 807-818.
| Crossref | Google Scholar | PubMed |
Quek ZBR, Jain SS, Richards ZT, Arrigoni R, Benzoni F, Hoeksema BW, Carvajal JI, Wilson NG, Baird AH, Kitahara MV, Seiblitz IGL, Vaga CF, Huang D (2023) A hybrid-capture approach to reconstruct the phylogeny of Scleractinia (Cnidaria: Hexacorallia). Molecular Phylogenetics and Evolution 186, 107867.
| Crossref | Google Scholar | PubMed |
Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271, 640-642.
| Crossref | Google Scholar |
Romano SL, Palumbi SR (1997) Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in scleractinian corals. Journal of Molecular Evolution 45, 397-411.
| Crossref | Google Scholar | PubMed |
Roniewicz E (1984) Microstructural evidence of the distichophylliid affinity of the Caryophylliina (Scleractinia). Palaeontolographica Americana 54, 515-518.
| Google Scholar |
Roniewicz E, Morycowa E (1993) Evolution of the Scleractinia in the light of microstructural data. Courier Forschungsinstitut Senckenberg 164, 233-240.
| Google Scholar |
Schöne BR, Dunca E, Fiebig J, Pfeiffer M (2005) Mutvei’s solution: an ideal agent for resolving microgrowth structures of biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology 228(1–2), 149-166.
| Crossref | Google Scholar |
Seiblitz IGL, Capel K, Stolarski J, Quek ZBR, Huang D, Kitahara MV (2020) The earliest diverging extant scleractinian corals recovered by mitochondrial genomes. Scientific Reports 10(1), 20714.
| Crossref | Google Scholar | PubMed |
Seiblitz IGL, Vaga CF, Capel KCC, Cairns SD, Stolarski J, Quattrini AM, Kitahara MV (2022) Caryophylliids (Anthozoa, Scleractinia) and mitochondrial gene order: insights from mitochondrial and nuclear phylogenomics. Molecular Phylogenetics and Evolution 175, 107565.
| Crossref | Google Scholar | PubMed |
Sentoku A, Tokuda Y, Ezaki Y (2016) Burrowing hard corals occurring on the sea floor since 80 million years ago. Scientific Reports 6, 24355.
| Crossref | Google Scholar | PubMed |
Stolarski J (2003) 3-Dimensional micro- and nanostructural characteristics of the scleractinian corals skeleton: a biocalcification proxy. Acta Palaeontologica Polonica 48, 497-530.
| Google Scholar |
Stolarski J, Kitahara MV, Miller DJ, Cairns SD, Mazur M, Meibom A (2011) The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evolutionary Biology 11, 316.
| Crossref | Google Scholar | PubMed |
Stolarski J, Coronado I, Murphy JG, Kitahara MV, Janiszewska K, Mazur M, et al. (2021) A modern scleractinian coral with a two-component calcite–aragonite skeleton. Proceedings of the National Academy of Sciences 118(3), e2013316117.
| Crossref | Google Scholar | PubMed |
Swain TD, Schellinger JL, Strimaitis AM, Reuter KE (2015) Evolution of anthozoan polyp retraction mechanisms: convergent functional morphology and evolutionary allometry of the marginal musculature in order Zoanthidea (Cnidaria: Anthozoa: Hexacorallia). BMC Evolutionary Biology 15, 123.
| Crossref | Google Scholar |
van Oppen MJ, McDonald BJ, Willis B, Miller DJ (2001) The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Molecular Biology and Evolution 18(7), 1315-1329.
| Crossref | Google Scholar | PubMed |
Veron JEN, Odorico DM, Chen CA, Miller DJ (1996) Reassessing evolutionary relationships of scleractinian corals. Coral Reefs 15, 1-9.
| Crossref | Google Scholar |