Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

An integrative taxonomic approach to the Atlantic Hansarsia (formerly Nematoscelis) yields new krill taxa (Crustacea: Euphausiidae)

D. N. Kulagin https://orcid.org/0000-0002-5521-8598 A * , U. V. Simakova A , A. A. Lunina https://orcid.org/0000-0002-1105-8027 A and A. L. Vereshchaka A
+ Author Affiliations
- Author Affiliations

A Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nachimovsky prospect, RU-117218 Moscow, Russian Federation.

* Correspondence to: kulagin.dima@gmail.com

Handling Editor: Jo Wolfe

Invertebrate Systematics 38, IS23034 https://doi.org/10.1071/IS23034
Submitted: 23 June 2023  Accepted: 13 December 2023  Published: 17 January 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

A recent molecular phylogenetic and biogeographic study on the krill genus Hansarsia revealed undescribed cryptic diversity in the Atlantic. Each of four species analysed encompassed robust molecular clades that were linked to dimorphic males in H. microps, H. atlantica and H. tenella. We tested the robustness and divergence of the observed clades using an integrative approach including (1) three independent species delimitation methods for the mitochondrial COI gene (ASAP, GMYC, bPTP), (2) variability of two nuclear genes (H3 and ITS1) and (3) morphological analysis (MDS and PCA) with a dataset of 22 characters scored for 131 specimens. Both molecular and morphological analyses resulted in at least six distinct clades within the Atlantic Hansarsia. The strongest divergence was revealed between the two clades of H. tenella, one of which we diagnosed as a new species. Two clades of H. megalops also showed significant divergence but in the absence of males, we were reluctant to designate new species. Different clades linked to male forms in H. microps and H. atlantica are suggested as an incipient species. We also hypothesise an unusual trend in the evolution of euphausiids, in which visual recognition enhances tactile interaction during mating. Our results show that analyses of ostensibly well studied groups may yet yield taxonomic surprises.

ZooBank: urn:lsid:zoobank.org:pub:AE045636-50EF-450A-B9B3-9231E8B91522

Keywords: Atlantic Ocean, dimorphic males, Euphausiacea, evolution, integrative taxonomy, mate recognition, morphological analysis, new species, species delimitation, systematics.

References

Atkinson A, Ward P, Hunt BPV, Pakhomov EA, Hosie GW (2012) An overview of Southern Ocean zooplankton data: abundance, biomass, feeding and functional relationships. Ccamlr Science 19, 171-218.
| Google Scholar |

Beheregaray LB, Caccone A (2007) Cryptic biodiversity in a changing world. Journal of Biology 6, 9.
| Crossref | Google Scholar | PubMed |

Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW (2012) GenBank. Nucleic Acids Research 40, D48-D53.
| Crossref | Google Scholar | PubMed |

Boden BP, Day JHO (1954) The euphausiid crustaceans of southern African waters. Transactions of the Royal Society of South Africa 34, 181-243.
| Crossref | Google Scholar |

Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA, du Plessis L, Popinga A, Rambaut A, Rasmussen D, Siveroni I, Suchard MA, Wu CH, Xie D, Zhang C, Stadler T, Drummond AJ (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLOS Computational Biology 15, e1006650.
| Crossref | Google Scholar | PubMed |

Brinton E (1962) The distribution of Pacific euphausiids. Bulletin of the Scripps Institution of Oceanography 8, 21-270.
| Google Scholar |

Brinton E (1975) Euphausiids of Southeast Asian waters. Naga Report, Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 4(5), 1-287.
| Google Scholar |

Bucklin A, Wiebe PH, Smolenack SB, Copley NJ, Beaudet JG, Bonner KG, Färber-Lorda J, Pierson JJ (2007) DNA barcodes for species identification of euphausiids (Euphausiacea, Crustacea). Journal of Plankton Research 29, 483-493.
| Crossref | Google Scholar |

Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA barcoding of marine metazoa. Annual Review of Marine Science 3, 471-508.
| Crossref | Google Scholar | PubMed |

Bucklin A, Lindeque PK, Rodriguez-Ezpeleta N, Albaina A, Lehtiniemi M (2016) Metabarcoding of marine zooplankton: prospects, progress and pitfalls. Journal of Plankton Research 38, 393-400.
| Crossref | Google Scholar |

Bucklin A, DiVito KR, Smolina I, Choquet M, Questel JM, Hoarau G, O’Neill RJ (2018) Population Genomics of Marine Zooplankton. In ‘Population Genomics’. (Eds M Oleksiak, O Rajora) pp. 61–102. (Springer)

Chu KH, Li CP, Ho HY (2001) The first internal transcribed spacer (ITS-1) of ribosomal DNA as a molecular marker for phylogenetic and population analyses in Crustacea. Marine Biotechnology 3, 355-361.
| Crossref | Google Scholar | PubMed |

Clarke KR, Warwick RM (2001) ‘Changes in marine communities: an approach to statistical analysis and interpretation’, 2nd edn. (PRIMER-E, Ltd, Plymouth Marine Laboratory: Plymouth, UK)

Clement M, Snell Q, Walke P, Posada D, Crandall K (2002) TCS: Estimating gene genealogies. In ‘Proceedings of the 16th Parallel and Distributed Processing Symposium, Vol. 2’, 15–19 April 2002, Fort Lauderdale, FL, USA. (Ed. W Werner) p. 184. (IEEE Computer Society) 10.1109/IPDPS.2002.1016585

Davie PJF (2002) ‘Zoological Catalogue of Australia. Vol. 19.3A, Crustacea: Malacostraca. Phyllocarida, Hoplocarida, Eucarida (part 1).’ (Eds A Wells, WWK Houston) (Australian Biological Resources Study: Canberra, ACT, Australia; and CSIRO Publishing: Melbourne, Vic., Australia)

De Queiroz K (2007) Species concepts and species delimitation. Systematic Biology 56, 879-886.
| Crossref | Google Scholar | PubMed |

Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175(2), 477-485.
| Crossref | Google Scholar | PubMed |

Einarsson H (1942) Notes on Euphausiacea I–III. On the systematic value of the spermatheca, on sexual dimorphism in Nematoscelis and on the male in Bentheuphausia. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kjobenhavn 106, 263-286.
| Google Scholar |

Ekau W, Auel H, Hagen W, Koppelmann R, Wasmund N, Bohata K, Buchholz F, Geist S, Martin B, Schukat A, Verheye HM, Werner T (2018) Pelagic key species and mechanisms driving energy flows in the northern Benguela upwelling ecosystem and their feedback into biogeochemical cycles. Journal of Marine Systems 188, 49-62.
| Crossref | Google Scholar |

Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62, 707-724.
| Crossref | Google Scholar | PubMed |

Gopalakrishnan K (1974) Zoogeography of the genus Nematoscelis. Fishery Bulletin 72, 1039-1074.
| Google Scholar |

Gopalakrishnan K (1975) Biology and taxonomy of the genus Nematoscelis (Crustacea, Euphausiacea). Fishery Bulletin Rational Oceanic Atmospheric Administration of the United States 73, 797-814.
| Google Scholar |

Goulpeau A, Penel B, Maggia ME, Marchán DF, Steinke D, Hedde M, Decaëns T (2022) OTU delimitation with earthworm DNA barcodes: a comparison of methods. Diversity 14(10), 866.
| Crossref | Google Scholar |

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307-321.
| Crossref | Google Scholar | PubMed |

Gurney L, Froneman P, Pakhomov E, McQuaid C (2001) Trophic positions of three euphausiid species from the Prince Edward Islands (Southern Ocean): implications for the pelagic food web structure. Marine Ecology Progress Series 217, 167-174.
| Crossref | Google Scholar |

Hammer Ø, Harper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 1-9.
| Google Scholar |

Hansen HJ (1905) Further notes on the Schizopoda. Bulletin du Musée. Océanographique de Monaco 42, 1-32.
| Google Scholar |

Hansen HJ (1910) The Schizopoda of the Siboga Expedition. Siboga Expedition 37, 1-123.
| Google Scholar |

Hansen HJ (1911) The genera and species of the order Euphausiacea, with account of remarkable variation. Bulletin de l’Institut océanographique de Monaco 210, 1-54.
| Google Scholar |

Hansen HJ (1912) Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge of Alexander Agassiz, by the U.S. Fish Commission steamer “Albatross”, from October 1904 to March 1905, Lieut. Commander L.M. Garret, U.S.N. commanding. 27. The Schizopoda. Memoirs of the Museum of Comparative Zoology 35, 175-296.
| Google Scholar |

Hansen HJ (1915) The Crustacea Euphausiacea of the United States National Museum. Proceedings of the United States National Museum 48, 59-114.
| Crossref | Google Scholar |

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518-522.
| Crossref | Google Scholar |

James PT (1973) Distribution of dimorphic males of three species of Nematoscelis (Euphausiacea). Marine Biology 19, 341-347.
| Crossref | Google Scholar |

Jukes TH, Cantor CR (1969) Evolution of protein molecules. In ‘Mammalian protein metabolism’. (Ed. HN Munro) pp. 21–132. (Academic Press: New York, NY, USA)

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772-780.
| Crossref | Google Scholar | PubMed |

Kekkonen M, Hebert PD (2014) DNA barcode‐based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources 14(4), 706-715.
| Crossref | Google Scholar | PubMed |

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111-120.
| Crossref | Google Scholar | PubMed |

Kulagin DN, Lunina AA, Simakova UV, Vereshchaka AL (2021) Progressing diversification and biogeography of the mesopelagic Nematoscelis (Crustacea: Euphausiacea) in the Atlantic. ICES Journal of Marine Science 78, 3457-3463.
| Crossref | Google Scholar |

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 1547-1549.
| Crossref | Google Scholar | PubMed |

Leigh JW, Bryant D (2015) PopART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6, 1110-1116.
| Crossref | Google Scholar |

Lindeque PK, Parry HE, Harmer RA, Somerfield PJ, Atkinson A (2013) Next generation sequencing reveals the hidden diversity of zooplankton assemblages. PLoS One 8, e81327.
| Crossref | Google Scholar | PubMed |

Lomakina NB, Strelkov AA, Vasilenko SV (1981) ‘Euphausiids of the World Ocean (Euphausiacea).’ (Nauka Press: Leningrad, USSR)

Lunina AA, Kulagin DN, Vereshchaka AL (2018) Oplophoridae (Decapoda: Crustacea): phylogeny, taxonomy and evolution studied by a combination of morphological and molecular methods. Zoological Journal of the Linnean Society 186, 213-232.
| Crossref | Google Scholar |

Lunina AA, Kulagin DN, Vereshchaka AL (2019) A hard-earned draw: phylogeny-based revision of the deep-sea shrimp Bentheogennema (Decapoda: Benthesicymidae) transfers two species to other genera and reveals two new species. Zoological Journal of the Linnean Society 187, 1155-1172.
| Crossref | Google Scholar |

Lunina AA, Kulagin DN, Vereshchaka AL (2020) Phylogenetic revision of the shrimp genera Ephyrina, Meningodora and Notostomus (Acanthephyridae: Caridea). Zoological Journal of the Linnean Society 193, 1002-1019.
| Crossref | Google Scholar |

Marr JWS (1962) The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discovery Reports 32, 33-464.
| Google Scholar |

Marshall E (2019) Kruskal–Wallis in SPSS. Community project encouraging academics to share statistics support resources. Available at https://www.studocu.com/row/document/bahcesehir-ueniversitesi/managerial-skills-and-strategic-management/lecture-notes/kruskal-wallis-test-manual/6221473/view

Mauchline J (1980) The biology of mysids and euphausiids. Part 2. The biology of euphausiids. Advances in Marine Biology 18, 372-623.
| Google Scholar |

Mauchline J, Fisher LR (1969) The biology of Euphausiids. Advances in Marine Biology 7, 1-454.
| Google Scholar |

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 1530-1534.
| Crossref | Google Scholar | PubMed |

Neil DM, Ansell AD (1995) The orientation of tail-flip escape swimming in decapod and mysid crustaceans. Journal of the Marine Biological Association of the United Kingdom 75, 55-70.
| Crossref | Google Scholar |

Ocasio-Torres ME, Crowl TA, Sabat AM (2015) Allometric differences between two phenotypes of the amphidromous shrimp Xiphocaris elongata. Journal of Crustacean Biology 35, 747-752.
| Crossref | Google Scholar |

Padial JM, Miralles A, De la Riva I, Vences M (2010) The integrative future of taxonomy. Frontiers in Zoology 7, 16.
| Crossref | Google Scholar | PubMed |

Parks MM, Kurylo CM, Batchelder JE, Theresa Vincent C, Blanchard SC (2019) Implications of sequence variation on the evolution of rRNA. Chromosome Research 27, 89-93.
| Crossref | Google Scholar | PubMed |

Paz A, Crawford AJ (2012) Molecular-based rapid inventories of sympatric diversity: a comparison of DNA barcode clustering methods applied to geography-based vs clade-based sampling of amphibians. Journal of Biosciences 37, 887-896.
| Crossref | Google Scholar | PubMed |

Pfenninger M, Schwenk K (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7, 121.
| Crossref | Google Scholar | PubMed |

Ponomareva LA (1990) ‘Biology of euphausiids of the World Ocean.’ (Nauka: Moscow, Russian Federation) [In Russian]

Puillandre N, Brouillet S, Achaz G (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21, 609-620.
| Crossref | Google Scholar | PubMed |

Radulovici AE, Archambault P, Dufresne F (2010) DNA Barcodes for Marine Biodiversity: Moving Fast Forward? Diversity 2, 450-472.
| Crossref | Google Scholar |

Riquelme-Bugueño R, Escribano R, Gómez-Gutiérrez J (2013) Somatic and molt production in Euphausia mucronata off central-southern Chile: the influence of coastal upwelling variability. Marine Ecology Progress Series 476, 39-57.
| Crossref | Google Scholar |

Ruud JT (1936) Euphausiacea. Report on the Danish Oceanographical Expeditions 1908-1910 to the Mediterranean and adjacent seas 2, 1-86.
| Google Scholar |

Sars GO (1883) Preliminary notices on the Schizopoda of H.M.S. Challenger Expedition. Forhandlinger i Videnskabs-selskabet i Christiania 7, 1-43.
| Google Scholar |

Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology 55, 421-438.
| Crossref | Google Scholar | PubMed |

Shaw JJ (2023) Hansarsia nom. nov., a replacement name for Nematoscelis G.O. Sars, 1883 (Crustacea: Euphausiidae), a junior homonym of Nematoscelis Wollaston, 1867 (Coleoptera: Staphylinidae: Aleocharinae). Zootaxa 5256(1), 84-86.
| Crossref | Google Scholar | PubMed |

Smith SA, Santoferrara LF, Katz LA, McManus GB (2022) Genome architecture used to supplement species delineation in two cryptic marine ciliates. Molecular Ecology Resources 22(8), 2880-2896.
| Crossref | Google Scholar | PubMed |

Soubrier J, Steel M, Lee MSY, Der Sarkissian C, Guindon S, Ho SYW, Cooper A (2012) The influence of rate heterogeneity among sites on the time dependence of molecular rates. Molecular Biology and Evolution 29, 3345-3358.
| Crossref | Google Scholar | PubMed |

Spiridonov V, Casanova B (2010) Order Euphausiacea Dana, 1852. In ‘Treatise on Zoology-Anatomy, Taxonomy, Biology. The Crustacea, 9 Part A’. (Eds F Schram, JCVV Klein) pp. 5–82. (Brill: Leiden, Netherlands) 10.1163/9789004187801_003

Stefani F, Benzoni F, Pichon M, Mitta G, Galli P (2008) Genetic and morphometric evidence for unresolved species boundaries in the coral genus Psammocora (Cnidaria; Scleractinia). Hydrobiologia 596, 153-172.
| Crossref | Google Scholar |

Taguchi YH, Oono Y (2005) Nonmetric multidimensional scaling as a data-mining tool: new algorithm and new targets. In ‘Geometric Structures of Phase Space in Multidimensional Chaos’. (Eds SA Rice, M Toda, T Komatsuzaki, T Konishi, RS Berry, SA Rice) pp. 315–351. (Wiley)

Tarling GA, Johnson ML (2006) Satiation gives krill that sinking feeling. Current Biology 16, R83-R84.
| Crossref | Google Scholar | PubMed |

Vereshchaka AL, Kulagin DN, Lunina AA (2019a) A phylogenetic study of krill (Crustacea: Euphausiacea) reveals new taxa and co-evolution of morphological characters. Cladistics 35, 150-172.
| Google Scholar |

Vereshchaka AL, Corbari L, Kulagin DN, Lunina AA, Olesen J (2019b) A phylogeny-based revision of the shrimp genera Altelatipes, Benthonectes and Benthesicymus (Crustacea: Decapoda: Benthesicymidae). Zoological Journal of the Linnean Society 189, 207-227.
| Google Scholar |

Vereshchaka AL, Kulagin DN, Lunina AA (2021a) Across the benthic and pelagic realms: a species‐level phylogeny of Benthesicymidae (Crustacea:Decapoda). Invertebrate Systematics 35, 776-796.
| Crossref | Google Scholar |

Vereshchaka A, Kulagin D, Lunina A (2021b) A new shrimp genus (Crustacea: Decapoda) from the deep Atlantic and an unusual cleaning mechanism of pelagic decapods. Diversity 13, 536.
| Crossref | Google Scholar |

Vereshchaka A, Kulagin D, Lunina A (2022) Discovery of a new species provides a deeper insight into taxonomic grouping of the deep-sea genus Acanthephyra (Crustacea: Decapoda). Diversity 14, 907.
| Crossref | Google Scholar |

Wall-Palmer D, Hegmann M, Goetze E, Peijnenburg KTCA (2019) Resolving species boundaries in the Atlanta brunnea species group (Gastropoda, Pterotracheoidea). ZooKeys 899, 59-84.
| Crossref | Google Scholar | PubMed |

Wiebe PH, Bucklin A, Kaartvedt S, Røstad A, Blanco-Bercial L (2016) Vertical distribution and migration of euphausiid species in the Red Sea. Journal of Plankton Research 38, 888-903.
| Crossref | Google Scholar |

Yang Z (1995) A space-time process model for the evolution of DNA sequences. Genetics 139, 993-1005.
| Crossref | Google Scholar | PubMed |

Zar JH (1996) ‘Biostatistical Analysis’, 3rd edn. (Prentice-Hall: London, UK)

Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869-2876.
| Google Scholar |

Zimmer C, Gruner HE (1956) Euphausiacea. Dr H.G. Bronns Klassen und Ordnungen des Tierreichs 6, 1-286.
| Google Scholar |