Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Reappraisal of the hyperdiverse Platynereis dumerilii (Annelida: Nereididae) species complex in the Northern Atlantic, with the description of two new species

Marcos A. L. Teixeira https://orcid.org/0000-0002-2228-2673 A B * , Joachim Langeneck https://orcid.org/0000-0003-3665-8683 C , Pedro E. Vieira https://orcid.org/0000-0003-4880-3323 A B , José Carlos Hernández https://orcid.org/0000-0002-1539-1783 D , Bruno R. Sampieri https://orcid.org/0000-0002-1675-1090 E , Panagiotis Kasapidis https://orcid.org/0000-0002-1538-0320 F , Serena Mucciolo https://orcid.org/0000-0003-0193-6831 G , Torkild Bakken https://orcid.org/0000-0002-5188-7305 H , Ascensão Ravara https://orcid.org/0000-0002-1689-2985 I , Arne Nygren https://orcid.org/0000-0001-5761-8803 J and Filipe O. Costa https://orcid.org/0000-0001-5398-3942 A B
+ Author Affiliations
- Author Affiliations

A Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, PT-4710-057 Braga, Portugal.

B Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, PT-4710-057 Braga, Portugal.

C Dipartimento di Biologia, Università di Pisa, via Derna 1, I-56126 Pisa, Italy.

D Biología Animal, Edafología y Geología, Universidad de La Laguna, Tenerife, Spain.

E Museu de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas (IB/UNICAMP), Rua Charles Darwin, Bloco N, Cidade Universitária, Campinas, SP, Brazil.

F Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Anávyssos, Greece.

G Katedra Zoologii Bezkręgowców i Hydrobiologii, Uniwersytet Łódzki, ulica Banacha 12/16, P-90-237 Łódź, Poland.

H Norwegian University of Science and Technology, NTNU University Museum, NO-7491 Trondheim, Norway.

I Department of Biology, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, PT-3810-193 Aveiro, Portugal.

J Institutionen for marina vetenskaper, Göteborgs Universitet, Tjärnö, Strömstad, Sweden.

* Correspondence to: mark-us_teixeira@hotmail.com

Handling Editor: Greg Rouse

Invertebrate Systematics 36(11) 1017-1061 https://doi.org/10.1071/IS21084
Submitted: 24 December 2021  Accepted: 28 August 2022   Published: 17 November 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

Morphologically similar species are often overlooked but molecular techniques have been effective in signalling potential hidden diversity, boosting the documentation of unique evolutionary lineages and ecological diversity. Platynereis dumerilii and Platynereis massiliensis are part of a recognised species complex, where differences in the reproductive biology have mainly been highlighted to date. Analyses of DNA sequence data (COI, 16S rDNA and D2 region of the 28S rDNA) of populations of the apparent morphotype of P. dumerilii obtained from a broader sampling area along European marine waters, including the Azores and Webbnesia islands (Madeira and Canaries), provided compelling evidence for the existence of at least 10 divergent evolutionary lineages. Complementing the genetic data, morphological observations of the better represented lineages revealed two major groups with distinctive paragnath patterns. Two new Platynereis species were erected: P. nunezi sp. nov., widespread in the Azores and Webbnesia islands, and P. jourdei sp. nov., restricted to the western Mediterranean. The new combination P. agilis is also proposed for Nereis agilis, previously unaccepted for one of the lineages present both in the Northeast Atlantic and western Mediterranean. Platynereis dumerilii is redescribed based on topotypic material. However, uncertainty in the identity of P. massiliensis due to the original brief description and the absence of type and topotypic material prevents the unequivocal assignment to the lineage assumed in this and previous studies. The remaining five lineages are represented by only a few small specimens with morphological features poorly preserved and were therefore not described in this study.

ZooBank: urn:lsid:zoobank.org:pub:50079615-85E5-447E-BDD7-21E81C2A6F4D

Keywords: Annelida, Azores, cryptic species, Europe, integrative taxonomy, mitochondrial DNA, nuclear DNA, systematics, Webbnesia.


References

Abbiati, M, and Castelli, A (1992). Platynereis nadiae sp. n. (Polychaeta: Nereididae) from Italian coasts. Zoologica Scripta 21, 151–155.
Platynereis nadiae sp. n. (Polychaeta: Nereididae) from Italian coasts.Crossref | GoogleScholarGoogle Scholar |

Arvanitidis, C (2000). Polychaete fauna of the Aegean Sea: inventory and new information. Bulletin of Marine Science 66, 73–96.

Astrin, J, Zhou, X, and Misof, B (2013). The importance of biobanking in molecular taxonomy, with proposed definitions for vouchers in a molecular context. ZooKeys 365, 67–70.
The importance of biobanking in molecular taxonomy, with proposed definitions for vouchers in a molecular context.Crossref | GoogleScholarGoogle Scholar |

Audouin, JV, and Milne Edwards, H (1833). [Part 3.] Classification des Annélides et description de celles qui habitent les côtes de la France. Annales des sciences naturelles, Paris (series 1) 29, 195–269.

Bakken, T, and Wilson, RS (2005). Phylogeny of nereidids (Polychaeta, Nereididae) with paragnaths. Zoologica Scripta 34, 507–547.
Phylogeny of nereidids (Polychaeta, Nereididae) with paragnaths.Crossref | GoogleScholarGoogle Scholar |

Bakken, T, Glasby, CJ, and Wilson, RS (2009). A review of paragnath morphology in Nereididae (Polychaeta). Zoosymposia 2, 305–316.
A review of paragnath morphology in Nereididae (Polychaeta).Crossref | GoogleScholarGoogle Scholar |

Bakken T, Hårsaker K, Daverdin M (2021) Marine invertebrate collection NTNU University Museum. Version 1.976. Norwegian University of Science and Technology. Occurrence dataset. 10.15468/ddbs14

Bellan, G (1980). Relationship of pollution to rocky substratum polychaetes on the French Mediterranean coast. Marine Pollution Bulletin 11, 318–321.
Relationship of pollution to rocky substratum polychaetes on the French Mediterranean coast.Crossref | GoogleScholarGoogle Scholar |

Bickford, D, Lohman, DJ, Sodhi, NS, Ng, PKL, Meier, R, Winker, K, Ingram, KK, and Das, I (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
Cryptic species as a window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |

Bouckaert, R, Heled, J, Kühnert, D, Vaughan, T, Wu, C-H, Xie, D, Suchard, MA, Rambaut, A, and Drummond, AJ (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLOS Computational Biology 10, e1003537.
BEAST 2: a software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar |

Calosi, P, Rastrick, SPS, Lombardi, C, de Guzman, HJ, Davidson, L, Jahnke, M, Giangrande, A, Hardege, JD, Schulze, A, Spicer, JI, and Gambi, M-C (2013). Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 368, 20120444.
Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system.Crossref | GoogleScholarGoogle Scholar |

Carr, CM, Hardy, SM, Brown, TM, Macdonald, TA, and Hebert, PDN (2011). A tri-oceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes. PLoS One 6, e22232.
A tri-oceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes.Crossref | GoogleScholarGoogle Scholar |

Cerca, J, Meyer, C, Purschke, G, and Struck, TH (2020). Delimitation of cryptic species drastically reduces the geographical ranges of marine interstitial ghost-worms (Stygocapitella; Annelida, Sedentaria). Molecular Phylogenetics and Evolution 143, 106663.
Delimitation of cryptic species drastically reduces the geographical ranges of marine interstitial ghost-worms (Stygocapitella; Annelida, Sedentaria).Crossref | GoogleScholarGoogle Scholar |

Churchill, CKC, Valdés, Á, and Foighil, DÓ (2014). Molecular and morphological systematics of neustonic nudibranchs (Mollusca : Gastropoda : Glaucidae : Glaucus), with descriptions of three new cryptic species. Invertebrate Systematics 28, 174–195.
Molecular and morphological systematics of neustonic nudibranchs (Mollusca : Gastropoda : Glaucidae : Glaucus), with descriptions of three new cryptic species.Crossref | GoogleScholarGoogle Scholar |

Claparède, E (1868). Les annélides chétopodes du Golfe de Naples. Mémoires de la Société de Physique et d’Histoire Naturelle de Genève 19, 313–584.

Claparède, E (1870). Les Annélides Chétopodes du Golfe de Naples. Supplément. Mémoires de la Société de Physique et D’histoire Naturelle de Genève 20, 365–542.

Clement M, Snell Q, Walke P, Posada D, Crandall K (2002) TCS: estimating gene genealogies. In ‘Proceedings 16th International Parallel and Distributed Processing Symposium’, 15–19 April 2001, Fort Lauderdale, FL, USA. (IEEE) 10.1109/IPDPS.2002.1016585

Coll, M, Piroddi, C, Steenbeek, J, Kaschner, K, Lasram, FBR, Aguzzi, J, Ballesteros, E, Bianchi, CN, Corbera, J, Dailianis, T, Danovaro, R, Estrada, M, Froglia, C, Galil, BS, Gasol, JM, Gertwagen, R, Gil, J, Guilhaumon, F, Kesner-Reyes, K, Kitsos, MS, Koukouras, A, Lampadariou, N, Laxamana, E, López-Fé de la Cuadra, CM, Lotze, HK, Martin, D, Mouillot, D, Oro, D, Raicevich, S, Rius-Barile, J, Saiz-Salinas, JI, San Vicente, C, Somot, S, Templado, J, Turon, X, Vafidis, D, Villanueva, R, and Voultsiadou, E (2010). The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5, e11842.
The biodiversity of the Mediterranean Sea: estimates, patterns, and threats.Crossref | GoogleScholarGoogle Scholar |

Conde-Vela, VM (2018). New species of Pseudonereis Kinberg, 1865 (Polychaeta: Nereididae) from the Atlantic Ocean, and a review of paragnath morphology and methodology. Zootaxa 4471, 245–278.
New species of Pseudonereis Kinberg, 1865 (Polychaeta: Nereididae) from the Atlantic Ocean, and a review of paragnath morphology and methodology.Crossref | GoogleScholarGoogle Scholar |

Conde-Vela, VM, and Salazar-Vallejo, SI (2015). Redescriptions of Nereis oligohalina (Rioja, 1946) and N. garwoodi González-Escalante & Salazar-Vallejo, 2003 and description of N. confusa sp. n. (Annelida, Nereididae). ZooKeys 518, 15–49.

Daas, T, Younsi, M, Daas-Maamcha, O, Gillet, P, and Scaps, P (2011). Reproduction, population dynamics and production of Nereis falsa (Nereididae: Polychaeta) on the rocky coast of El Kala National Park, Algeria. Helgoland Marine Research 65, 165–173.
Reproduction, population dynamics and production of Nereis falsa (Nereididae: Polychaeta) on the rocky coast of El Kala National Park, Algeria.Crossref | GoogleScholarGoogle Scholar |

Darriba, D, Taboada, GL, Doallo, R, and Posada, D (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772–772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar |

Day JH (1967) ‘A Monograph on the Polychaeta of Southern Africa. Vol. 2. Sedentaria.’ (Trustees of the British Museum (Natural History): London, UK)

Delić, T, Trontelj, P, Rendoš, M, and Fišer, C (2017). The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Scientific Reports 7, 3391.
The importance of naming cryptic species and the conservation of endemic subterranean amphipods.Crossref | GoogleScholarGoogle Scholar |

Desiderato, A, Costa, FO, Serejo, CS, Abbiati, M, Queiroga, H, and Vieira, PE (2019). Macaronesian islands as promoters of diversification in amphipods: the remarkable case of the family Hyalidae (Crustacea, Amphipoda). Zoologica Scripta 48, 359–375.
Macaronesian islands as promoters of diversification in amphipods: the remarkable case of the family Hyalidae (Crustacea, Amphipoda).Crossref | GoogleScholarGoogle Scholar |

Ehlers E (1868) ‘Die Borstenwürmer (Annelida Chætopoda) nach systematischen und anatomischen Untersuchungen dargestellt’. (Wilhelm Engelmann)

Faulwetter, S, Simboura, N, Katsiaras, N, Chatzigeorgiou, G, and Arvanitidis, C (2017). Polychaetes of Greece: an updated and annotated checklist. Biodiversity Data Journal 5, e20997.
Polychaetes of Greece: an updated and annotated checklist.Crossref | GoogleScholarGoogle Scholar |

Fischer, A, and Dorresteijn, A (2004). The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. Bioessays 26, 314–325.
The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle.Crossref | GoogleScholarGoogle Scholar |

Freitas, R, Romeiras, M, Silva, L, Cordeiro, R, Madeira, P, González, JA, Wirtz, P, Falcón, JM, Brito, A, Floeter, SR, Afonso, P, Porteiro, F, Viera-Rodríguez, MA, Neto, AI, Haroun, R, Farminhão, JNM, Rebelo, AC, Baptista, L, Melo, CS, Martínez, A, Núñez, J, Berning, B, Johnson, ME, and Ávila, SP (2019). Restructuring of the ‘Macaronesia’ biogeographic unit: a marine multi-taxon biogeographical approach. Scientific Reports 9, e15792.
Restructuring of the ‘Macaronesia’ biogeographic unit: a marine multi-taxon biogeographical approach.Crossref | GoogleScholarGoogle Scholar |

Fujisawa, T, and Barraclough, TG (2013). Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62, 707–724.
Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets.Crossref | GoogleScholarGoogle Scholar |

Gambi, MC, Zupo, V, Buia, MC, and Mazzella, L (2000). Feeding ecology of Platynereis dumerilii (Audouin & Milne-Edwards) in the seagrass Posidonia oceanica system: the role of the epiphytic flora (Polychaeta, nereididae). Ophelia 53, 189–202.
Feeding ecology of Platynereis dumerilii (Audouin & Milne-Edwards) in the seagrass Posidonia oceanica system: the role of the epiphytic flora (Polychaeta, nereididae).Crossref | GoogleScholarGoogle Scholar |

Gambi, MC, Musco, L, Giangrande, A, Badalamenti, F, Micheli, F, and Kroeker, KJ (2016). Distribution and functional traits of polychaetes in a CO2 vent system: winners and losers among closely related species. Marine Ecology Progress Series 550, 121–134.
Distribution and functional traits of polychaetes in a CO2 vent system: winners and losers among closely related species.Crossref | GoogleScholarGoogle Scholar |

Giangrande, A (1988). Polychaete zonation and its relation to algal distribution down a vertical cliff in the western Mediterranean (Italy): a structural analysis. Journal of Experimental Marine Biology and Ecology 120, 263–276.
Polychaete zonation and its relation to algal distribution down a vertical cliff in the western Mediterranean (Italy): a structural analysis.Crossref | GoogleScholarGoogle Scholar |

Glasby, CJ (2005). Polychaete distribution patterns revisited: an historical explanation. Marine Ecology 26, 235–245.
Polychaete distribution patterns revisited: an historical explanation.Crossref | GoogleScholarGoogle Scholar |

Glasby, CJ (2015). Nereididae (Annelida: Phyllodocida) of Lizard Island, Great Barrier Reef, Australia. Zootaxa 4019, 207–239.
Nereididae (Annelida: Phyllodocida) of Lizard Island, Great Barrier Reef, Australia.Crossref | GoogleScholarGoogle Scholar |

Glasby, CJ, Wei, N-WV, and Gibb, KS (2013). Cryptic species of Nereididae (Annelida : Polychaeta) on Australian coral reefs. Invertebrate Systematics 27, 245–264.
Cryptic species of Nereididae (Annelida : Polychaeta) on Australian coral reefs.Crossref | GoogleScholarGoogle Scholar |

González-Delgado, S, González-Santana, D, Santana-Casiano, M, González-Dávila, M, Hernández, CA, Sangil, C, and Hernández, JC (2021). Chemical characterization of the Punta de Fuencaliente CO2-enriched system (La Palma, NE Atlantic Ocean): a new natural laboratory for ocean acidification studies. Biogeosciences 18, 1673–1687.
Chemical characterization of the Punta de Fuencaliente CO2-enriched system (La Palma, NE Atlantic Ocean): a new natural laboratory for ocean acidification studies.Crossref | GoogleScholarGoogle Scholar |

Gravina, MF, Lezzi, M, Bonifazi, A, and Giangrande, A (2015). The genus Nereis Linnaeus, 1758 (Polychaeta, Nereididae): state of the art for identification of Mediterranean species. Atti della Societa Toscana di Scienze Naturali, Memorie Serie B 122, 147–164.

Guindon, S, and Gascuel, O (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696–704.
A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.Crossref | GoogleScholarGoogle Scholar |

Hartman, O (1951). The littoral marine annelids of the Gulf of Mexico. Publications of the Institute of Marine Science, Port Aransas, Texas 2, 7–124.

Hartmann-Schroeder G (1996) Annelida, Borstenwuermer, Polychaeta. In ‘Tierwelt Deutschlands. Vol. 58’, 2nd edn. (Eds M Dahl, F Peus) (Gustav Fische: Jena, Germany)

Hauenschild, C (1951). Nachweis der sogenannten atoken Geschlechtsform des Polychaeten Platynereis dumerilii Aud. et M.-Edw. als eigene Art aufgrund von Zuchtversuchen. Zoologische Jahrbücher. Abteilung für Allgemeine Zoologie und Physiologie der Tiere 63, 107–128.

Helm, C, Adamo, H, Hourdez, S, and Bleidorn, C (2014). An immunocytochemical window into the development of Platynereis massiliensis (Annelida, Nereididae). The International Journal of Developmental Biology 58, 613–622.
An immunocytochemical window into the development of Platynereis massiliensis (Annelida, Nereididae).Crossref | GoogleScholarGoogle Scholar |

Hupało, K, Teixeira, MAL, Rewicz, T, Sezgin, M, Iannilli, V, Karaman, GS, Grabowski, M, and Costa, FO (2019). Persistence of phylogeographic footprints helps to understand cryptic diversity detected in two marine amphipods widespread in the Mediterranean basin. Molecular Phylogenetics and Evolution 132, 53–66.
Persistence of phylogeographic footprints helps to understand cryptic diversity detected in two marine amphipods widespread in the Mediterranean basin.Crossref | GoogleScholarGoogle Scholar |

Hutchings, P, and Kupriyanova, E (2018). Cosmopolitan polychaetes – fact or fiction? Personal and historical perspectives. Invertebrate Systematics 32, 1–9.
Cosmopolitan polychaetes – fact or fiction? Personal and historical perspectives.Crossref | GoogleScholarGoogle Scholar |

Ibarzábal, DR (2006). Poliquetos del Archipiélago de Sabana-Camagüey, ecoregión norcentral de Cuba. Cocuyo 16, 11–14.

Jörger, KM, Norenburg, JL, Wilson, NG, and Schrödl, M (2012). Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. BMC Evolutionary Biology 12, 245.
Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs.Crossref | GoogleScholarGoogle Scholar |

Kara, J, Santos, CSG, Macdonald, AHH, and Simon, CA (2020). Resolving the taxonomic identities and genetic structure of two cryptic Platynereis Kinberg species from South Africa. Invertebrate Systematics 34, 618–636.
Resolving the taxonomic identities and genetic structure of two cryptic Platynereis Kinberg species from South Africa.Crossref | GoogleScholarGoogle Scholar |

Keferstein, W (1862). Untersuchungen über niedere Seethiere. Zeitschrift für wissenschaftliche Zoologie 12, 1–147, plates 1–11.

Kinberg, JGH (1865). Annulata nova [Continuatio]. Öfversigt af Königlich. Vetenskapsakademiens förhandlingar. Stockholm 22, 167–179.

King, RA, Fagan-Jeffries, EP, Bradford, TM, Stringer, DN, Finston, TL, Halse, SA, Eberhard, SM, Humphreys, G, Humphreys, BF, Austin, AD, and Cooper, SJB (2022). Cryptic diversity down under: defining species in the subterranean amphipod genus Nedsia Barnard & Williams, 1995 (Hadzioidea: Eriopisidae) from the Pilbara, Western Australia. Invertebrate Systematics 36, 113–159.
Cryptic diversity down under: defining species in the subterranean amphipod genus Nedsia Barnard & Williams, 1995 (Hadzioidea: Eriopisidae) from the Pilbara, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Kumar, S, Stecher, G, Li, M, Knyaz, C, and Tamura, K (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 1547–1549.
MEGA X: molecular evolutionary genetics analysis across computing platforms.Crossref | GoogleScholarGoogle Scholar |

Langeneck, J, Scarpa, F, Maltagliati, F, Sanna, D, Barbieri, M, Cossu, P, Mikac, B, Galletti, MC, Castelli, A, and Casu, M (2020). A complex species complex: the controversial role of ecology and biogeography in the evolutionary history of Syllis gracilis Grube, 1840 (Annelida, Syllidae). Journal of Zoological Systematics and Evolutionary Research 58, 66–78.
A complex species complex: the controversial role of ecology and biogeography in the evolutionary history of Syllis gracilis Grube, 1840 (Annelida, Syllidae).Crossref | GoogleScholarGoogle Scholar |

Leigh, JW, and Bryant, D (2015). popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6, 1110–1116.
popart: full-feature software for haplotype network construction.Crossref | GoogleScholarGoogle Scholar |

Librado, P, and Rozas, J (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar |

Lobo, J, Teixeira, MAL, Borges, LMS, Ferreira, MSG, Hollatz, C, Gomes, PT, Sousa, R, Ravara, A, Costa, MH, and Costa, FO (2016). Starting a DNA barcode reference library for shallow water polychaetes from the southern European Atlantic coast. Molecular Ecology Resources 16, 298–313.
Starting a DNA barcode reference library for shallow water polychaetes from the southern European Atlantic coast.Crossref | GoogleScholarGoogle Scholar |

Lucey, NM, Lombardi, C, DeMarchi, L, Schulze, A, Gambi, MC, and Calosi, P (2015). To brood or not to brood: are marine invertebrates that protect their offspring more resilient to ocean acidification? Scientific Reports 5, 12009.
To brood or not to brood: are marine invertebrates that protect their offspring more resilient to ocean acidification?Crossref | GoogleScholarGoogle Scholar |

McIntosh, WC (1910). A monograph of the British annelids. Polychaeta. Syllidae to Ariciidae. Ray Society of London 2, 233–524.

Malmgren AJ (1867) ‘Annulata Polychaeta Spetsbergiæ, Grœnlandiæ, Islandiæ et Scandinaviæ. Hactenus Cognita’. (Ex Officina Frenckelliana: Helsingforslæ)

Maltagliati, F, Camilli, L, Lardicci, C, and Castelli, A (2001). Evidence for morphological and genetic divergence in Perinereis cultrifera (Polychaeta: Nereididae) from two habitat types at Elba Island. Journal of the Marine Biological Association of the United Kingdom 81, 411–414.
Evidence for morphological and genetic divergence in Perinereis cultrifera (Polychaeta: Nereididae) from two habitat types at Elba Island.Crossref | GoogleScholarGoogle Scholar |

Marcel, R (1962). Cycle annuel de Perinereis cultrifera Grube (Annélide Polychète) à Alger. Mémoires de la Société des Sciences Naturelles de Cherbourg 19, 39–54.

Martin, D, Gil, J, Zanol, J, Meca, MA, and Portela, RP (2020). Correction: Digging the diversity of Iberian bait worms Marphysa (Annelida, Eunicidae). PLoS One 15, e0226749.
Correction: Digging the diversity of Iberian bait worms Marphysa (Annelida, Eunicidae).Crossref | GoogleScholarGoogle Scholar |

Miralles, L, Ardura, A, Arias, A, Borrell, YJ, Clusa, L, Dopico, E, de Rojas, AH, Lopez, B, Muñoz-Colmenero, M, Roca, A, Valiente, AG, Zaiko, A, and Garcia-Vazquez, E (2016). Barcodes of marine invertebrates from north Iberian ports: native diversity and resistance to biological invasions. Marine Pollution Bulletin 112, 183–188.
Barcodes of marine invertebrates from north Iberian ports: native diversity and resistance to biological invasions.Crossref | GoogleScholarGoogle Scholar |

Mikac, B (2015). A sea of worms: polychaete checklist of the Adriatic Sea. Zootaxa 3943, 1–172.
A sea of worms: polychaete checklist of the Adriatic Sea.Crossref | GoogleScholarGoogle Scholar |

Moquin-Tandon, G (1869). Note sur une nouvelle annelide chetopode hermaphrodite (Nereis massiliensis). Annales des sciences naturelles, Paris (series 5) 11, 134.

Norlinder, E, Nygren, A, Wiklund, H, and Pleijel, F (2012). Phylogeny of scale-worms (Aphroditiformia, Annelida), assessed from 18S rRNA, 28S rRNA, 16S rRNA, mitochondrial cytochrome c oxidase subunit I (COI), and morphology. Molecular Phylogenetics and Evolution 65, 490–500.
Phylogeny of scale-worms (Aphroditiformia, Annelida), assessed from 18S rRNA, 28S rRNA, 16S rRNA, mitochondrial cytochrome c oxidase subunit I (COI), and morphology.Crossref | GoogleScholarGoogle Scholar |

Núñez, J (2004). Familia Nereididae Savigny, 1822. In: Viéitez JM, Alós C, Parapar J, Besteiro C, Moreira J, Núñez J, Laborda J, San Martín G. Annelida Polychaeta I. Fauna Iberica 25, 293–390.

Nygren, A (2014). Cryptic polychaete diversity: a review. Zoologica Scripta 43, 172–183.
Cryptic polychaete diversity: a review.Crossref | GoogleScholarGoogle Scholar |

Nygren, A, Parapar, J, Pons, J, Meißner, K, Bakken, T, Kongsrud, JA, Oug, E, Gaeva, D, Sikorski, A, Johansen, RA, Hutchings, PA, Lavesque, N, and Capa, M (2018). A mega-cryptic species complex hidden among one of the most common annelids in the North East Atlantic. PLoS One 13, e0198356.
A mega-cryptic species complex hidden among one of the most common annelids in the North East Atlantic.Crossref | GoogleScholarGoogle Scholar |

Örsted AS (1843) Annulatorum danicorum conspectus. Auctore A.S. Örsted. Fasc. I. Maricolæ. (Quæstio ab universitate Hafniensi ad solvendum proposita et proemio ornata) Available at http://www.biodiversitylibrary.org/bibliography/11849

Özpolat, BD, Randel, N, Williams, EA, Bezares-Calderón, LA, Andreatta, G, Balavoine, G, Bertucci, PY, Ferrier, DEK, Gambi, MC, Gazave, E, Handberg-Thorsager, M, Hardege, J, Hird, C, Hsieh, Y-W, Hui, J, Mutemi, KN, Schneider, SQ, Simakov, O, Vergara, HM, Vervoort, M, Jékely, G, Tessmar-Raible, K, Raible, F, and Arendt, D (2021). The Nereid on the rise: Platynereis as a model system. EvoDevo 12, 10.
The Nereid on the rise: Platynereis as a model system.Crossref | GoogleScholarGoogle Scholar |

Paiva, PC, Mutaquilha, BF, Coutinho, MCL, and Santos, CSG (2019). Comparative phylogeography of two coastal species of Perinereis Kinberg, 1865 (Annelida, Polychaeta) in the South Atlantic. Marine Biodiversity 49, 1537–1551.
Comparative phylogeography of two coastal species of Perinereis Kinberg, 1865 (Annelida, Polychaeta) in the South Atlantic.Crossref | GoogleScholarGoogle Scholar |

Palumbi, SR, and Baker, CS (1994). Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Molecular Biology and Evolution 11, 426–435.
Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales.Crossref | GoogleScholarGoogle Scholar |

Pleijel, F, Jondelius, U, Norlinder, E, Nygren, A, Oxelman, B, Schander, C, Sundberg, P, and Thollesson, M (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution 48, 369–371.
Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies.Crossref | GoogleScholarGoogle Scholar |

Popa, LO, Popa, OP, Krapal, A-M, Iorgu, EI, and Surugiu, V (2014). Fine-scale population genetics analysis of Platynereis dumerilii (Polychaeta, Nereididae) in the Black Sea: how do local marine currents drive geographical differentiation? Journal of Experimental Zoology – A. Ecological Genetics and Physiology 321, 41–47.
Fine-scale population genetics analysis of Platynereis dumerilii (Polychaeta, Nereididae) in the Black Sea: how do local marine currents drive geographical differentiation?Crossref | GoogleScholarGoogle Scholar |

Prevedelli, D, and Cassai, C (2001). Reproduction and larval development of Perinereis rullieri Pilato in the Mediterranean Sea (Polychaeta: Nereididae). Ophelia 54, 133–142.
Reproduction and larval development of Perinereis rullieri Pilato in the Mediterranean Sea (Polychaeta: Nereididae).Crossref | GoogleScholarGoogle Scholar |

Puillandre, N, Lambert, A, Brouillet, S, and Achaz, G (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, Automatic Barcode Gap Discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar |

Quatrefages A (1866) ‘Histoire naturelle des Annelés marins et d’eau douce. Annélides et Géphyriens. Vol. 1’. (Librarie Encyclopédique de Roret: Paris, France) Available at http://books.google.com/books?id=FV9IAAAAYAAJ

Rambaut, A, Drummond, AJ, Xie, D, Baele, G, and Suchard, MA (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901–904.
Posterior summarization in Bayesian phylogenetics using Tracer 1.7.Crossref | GoogleScholarGoogle Scholar |

Ratnasingham, S, and Hebert, PDN (2013). A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS One 8, e66213.
A DNA-based registry for all animal species: the Barcode Index Number (BIN) system.Crossref | GoogleScholarGoogle Scholar |

Read, GB (2007). Taxonomy of sympatric New Zealand species of Platynereis, with description of three new species additional to P. australis (Schmarda) (Annelida: Polychaeta: Nereididae). Zootaxa 1558, 1–28.
Taxonomy of sympatric New Zealand species of Platynereis, with description of three new species additional to P. australis (Schmarda) (Annelida: Polychaeta: Nereididae).Crossref | GoogleScholarGoogle Scholar |

Read G, Fauchald K (Eds) (2021) Nereis heterocirrata Treadwell, 1931. In ‘World Polychaeta Database’. Available at https://www.marinespecies.org/polychaeta/aphia.php?p=taxdetails&id=329658 [Verified 12 May 2021]

Read G, Fauchald K (Eds) (2022) Platynereis dumerilii (Audouin & Milne Edwards, 1833). In ‘World Polychaeta Database’. Available at https://www.marinespecies.org/aphia.php?p=taxdetails&id=130417 [Verified 13 June 2022]

Ricevuto, E, Benedetti, M, Regoli, F, Spicer, JI, and Gambi, MC (2015). Antioxidant capacity of polychaetes occurring at a natural CO2 vent system: results of an in situ reciprocal transplant experiment. Marine Environmental Research 112, 44–51.
Antioxidant capacity of polychaetes occurring at a natural CO2 vent system: results of an in situ reciprocal transplant experiment.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F, and Huelsenbeck, JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar |

Rouhi, A, Gillet, P, and Deutsch, B (2008). Reproduction and population dynamics of Perinereis cultrifera (Polychaeta: Nereididae) of the Atlantic coast, El Jadida, Morocco. Cahiers De Biologie Marine 49, 151–160.

Sampieri, BR, Vieira, PE, Teixeira, MAL, Seixas, VC, Pagliosa, PR, Amaral, ACZ, and Costa, FO (2021). Molecular diversity within the genus Laeonereis (Annelida, Nereididae) along the west Atlantic coast: paving the way for integrative taxonomy. PeerJ 9, e11364.
Molecular diversity within the genus Laeonereis (Annelida, Nereididae) along the west Atlantic coast: paving the way for integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Sato, M, and Masuda, Y (1997). Genetic differentiation in two sibling species of the brackish-water polychaete Hediste japonica complex (Nereididae). Marine Biology 130, 163–170.
Genetic differentiation in two sibling species of the brackish-water polychaete Hediste japonica complex (Nereididae).Crossref | GoogleScholarGoogle Scholar |

Scaps, P, Retière, C, Desrosiers, G, and Miron, G (1992). Dynamique d’une population de Perinereis cultrifera (Grube) de la côte nord de Bretagne. Cahiers De Biologie Marine 33, 477–494.

Scaps, P, Rouabah, A, and Leprêtre, A (2000). Morphological and biochemical evidence that Perinereis cultrifera (Polychaeta: Nereididae) is a complex of species. Journal of the Marine Biological Association of the United Kingdom 80, 735–736.
Morphological and biochemical evidence that Perinereis cultrifera (Polychaeta: Nereididae) is a complex of species.Crossref | GoogleScholarGoogle Scholar |

Schneider, S, Fischer, A, and Dorresteijn, AWC (1992). A morphometric comparison of dissimilar early development in sibling species of Platynereis (Annelida, Polychaeta). Roux’s Archives of Developmental Biology 201, 243–256.
A morphometric comparison of dissimilar early development in sibling species of Platynereis (Annelida, Polychaeta).Crossref | GoogleScholarGoogle Scholar |

Struck, TH, Feder, JL, Bendiksby, M, Birkeland, S, Cerca, J, Gusarov, VI, Kistenich, S, Larsson, K-H, Liow, LH, Nowak, MD, Stedje, B, Bachmann, L, and Dimitrov, D (2018). Finding evolutionary processes hidden in cryptic species. Trends in Ecology & Evolution 33, 153–163.
Finding evolutionary processes hidden in cryptic species.Crossref | GoogleScholarGoogle Scholar |

Teixeira, MAL, Vieira, PE, Pleijel, F, Sampieri, BR, Ravara, A, Costa, FO, and Nygren, A (2020). Molecular and morphometric analyses identify new lineages within a large Eumida (Annelida) species complex. Zoologica Scripta 49, 222–235.
Molecular and morphometric analyses identify new lineages within a large Eumida (Annelida) species complex.Crossref | GoogleScholarGoogle Scholar |

Teixeira, MAL, Nygren, A, Ravara, A, Vieira, PE, Hernández, JC, and Costa, FO (2021). The small polychaete Platynereis dumerilii revealed as a large species complex with fourteen MOTUs in European marine habitats. ARPHA Conference Abstracts 4, e64937.
The small polychaete Platynereis dumerilii revealed as a large species complex with fourteen MOTUs in European marine habitats.Crossref | GoogleScholarGoogle Scholar |

Teixeira, MAL, Vieira, PE, Ravara, A, Costa, FO, and Nygren, A (2022). From 13 to 22 in a second stroke: revisiting the European Eumida sanguinea (Phyllodocidae: Annelida) species complex. Zoological Journal of the Linnean Society 196, 169–197.
From 13 to 22 in a second stroke: revisiting the European Eumida sanguinea (Phyllodocidae: Annelida) species complex.Crossref | GoogleScholarGoogle Scholar |

Teske, PR, von der Heyden, S, McQuaid, CD, and Barker, NP (2011). A review of marine phylogeography in southern Africa. South African Journal of Science 107, 43–53.
A review of marine phylogeography in southern Africa.Crossref | GoogleScholarGoogle Scholar |

Thompson, JD, Higgins, DG, and Gibson, TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Crossref | GoogleScholarGoogle Scholar |

Treadwell, AL (1931). Three new species of polychaetous annelids in the collections of the United State National Museum. Proceedings of the United States National Museum 80, 1–5.
Three new species of polychaetous annelids in the collections of the United State National Museum.Crossref | GoogleScholarGoogle Scholar |

Valvassori, G, Massa-Gallucci, A, and Gambi, MC (2015). Reappraisal of Platynereis massiliensis (Moquin-Tandon) (Annelida Nereididae) a neglected sibling species of Platynereis dumerilii (Audouin & Milne Edwards). Biologia Marina Mediterranea 22, 113–116.

Vieira, PE, Desiderato, A, Holdich, DM, Soares, P, Creer, S, Carvalho, GR, Costa, FO, and Queiroga, H (2019). Deep segregation in the open ocean: Macaronesia as an evolutionary hotspot for low dispersal marine invertebrates. Molecular Ecology 28, 1784–1800.
Deep segregation in the open ocean: Macaronesia as an evolutionary hotspot for low dispersal marine invertebrates.Crossref | GoogleScholarGoogle Scholar |

Villalobos-Guerrero, TF (2019). Redescription of two overlooked species of the Perinereis nuntia complex and morphological delimitation of P. nuntia (Savigny in Lamarck, 1818) from the Red Sea (Annelida, Nereididae). Zoosystema 41, 465–496.
Redescription of two overlooked species of the Perinereis nuntia complex and morphological delimitation of P. nuntia (Savigny in Lamarck, 1818) from the Red Sea (Annelida, Nereididae).Crossref | GoogleScholarGoogle Scholar |

Villalobos-Guerrero, TF, and Bakken, T (2018). Revision of the Alitta virens species complex (Annelida: Nereididae) from the North Pacific Ocean. Zootaxa 4483, 201–257.
Revision of the Alitta virens species complex (Annelida: Nereididae) from the North Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Villalobos-Guerrero, TF, and Carrera-Parra, LF (2015). Redescription of Alitta succinea (Leuckart, 1847) and reinstatement of A. acutifolia (Ehlers, 1901) n. comb. based upon morphological and molecular data (Polychaeta: Nereididae). Zootaxa 3919, 157–178.
Redescription of Alitta succinea (Leuckart, 1847) and reinstatement of A. acutifolia (Ehlers, 1901) n. comb. based upon morphological and molecular data (Polychaeta: Nereididae).Crossref | GoogleScholarGoogle Scholar |

Viveiros, F, Chiodini, G, Cardellini, C, Caliro, S, Zanon, V, Silva, C, Rizzo, AL, Hipólito, A, and Moreno, L (2020). Deep CO2 emitted at Furnas do Enxofre geothermal area (Terceira Island, Azores archipelago). An approach for determining CO2 sources and total emissions using carbon isotopic data. Journal of Volcanology and Geothermal Research 401, 106968.
Deep CO2 emitted at Furnas do Enxofre geothermal area (Terceira Island, Azores archipelago). An approach for determining CO2 sources and total emissions using carbon isotopic data.Crossref | GoogleScholarGoogle Scholar |

Wäge, J, Valvassori, G, Hardege, JD, Schulze, A, and Gambi, MC (2017). The sibling polychaetes Platynereis dumerilii and Platynereis massiliensis in the Mediterranean Sea: are phylogeographic patterns related to exposure to ocean acidification? Marine Biology 164, 199.
The sibling polychaetes Platynereis dumerilii and Platynereis massiliensis in the Mediterranean Sea: are phylogeographic patterns related to exposure to ocean acidification?Crossref | GoogleScholarGoogle Scholar |

Weitschek, E, Fiscon, G, and Felici, G (2014). Supervised DNA barcodes species classification: analysis, comparisons and results. BioData Mining 7, 4.
Supervised DNA barcodes species classification: analysis, comparisons and results.Crossref | GoogleScholarGoogle Scholar |

Zantke, J, Bannister, S, Rajan, VBV, Raible, F, and Tessmar-Raible, K (2014). Genetic and genomic tools for the marine annelid Platynereis dumerilii. Genetics 197, 19–31.
Genetic and genomic tools for the marine annelid Platynereis dumerilii.Crossref | GoogleScholarGoogle Scholar |

Zeeck, E, Hardege, J, Bartels-Hardege, H, and Wesselmann, G (1988). Sex pheromone in a marine polychaete: determination of the chemical structure. Journal of Experimental Zoology 246, 285–292.
Sex pheromone in a marine polychaete: determination of the chemical structure.Crossref | GoogleScholarGoogle Scholar |

Zeeck, E, Harder, T, and Beckmann, M (1998). Uric acid: the sperm-release pheromone of the marine polychaete Platynereis dumerilii. Journal of Chemical Ecology 24, 13–22.
Uric acid: the sperm-release pheromone of the marine polychaete Platynereis dumerilii.Crossref | GoogleScholarGoogle Scholar |

Zghal, F, and Ben Amor, Z (1989). Sur la présence en Méditerranée de la race épitoque de Perinereis cultrifera (Polychète). Archives de l’Institut Pasteur de Tunis 66, 293–301.

Zhang, J, Kapli, P, Pavlidis, P, and Stamatakis, A (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar |

Zhou, H, Zhang, Z, Chen, H, Sun, R, Wang, H, Guo, L, and Pan, H (2010). Integrating a DNA barcoding project with an ecological survey: a case study on temperate intertidal polychaete communities in Qingdao, China. Chinese Journal of Oceanology and Limnology 28, 899–910.
Integrating a DNA barcoding project with an ecological survey: a case study on temperate intertidal polychaete communities in Qingdao, China.Crossref | GoogleScholarGoogle Scholar |