Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Metagonia spiders of Galápagos: blind cave-dwellers and their epigean relatives (Araneae, Pholcidae)

Bernhard A. Huber https://orcid.org/0000-0002-7566-5424 A * , Guanliang Meng https://orcid.org/0000-0002-6488-1527 A , Andrea E. Acurio https://orcid.org/0000-0002-1792-7107 B , Jonas J. Astrin https://orcid.org/0000-0003-1961-1162 A , Diego J. Inclán C D , Matias Izquierdo https://orcid.org/0000-0002-1258-6454 E and Alejandro Valdez-Mondragón https://orcid.org/0000-0001-5385-3195 F
+ Author Affiliations
- Author Affiliations

A Arachnology Section, Zoological Research Museum Alexander Koenig, Adenauerallee 127, D-53113 Bonn, Germany.

B Charles Darwin Research Station, Charles Darwin Foundation, Santa Cruz Island, Galápagos, Ecuador.

C Instituto Nacional de Biodiversidad, Sección Invertebrados, Quito, Ecuador.

D Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito, Ecuador.

E Instituto de Diversidad y Ecología Animal, Universidad Nacional de Córdoba, Avda Vélez Sarsfield 299, X5000 JJC Córdoba, Argentina.

F Laboratorio de Aracnología, Instituto de Biología, Universidad Nacional Autónoma de México, sede Tlaxcala, San Miguel Contla, 90640 Santa Cruz Tlaxcala, Tlaxcala, México.

* Correspondence to: b.huber@leibniz-zfmk.de

Handling Editor: Mark Harvey

Invertebrate Systematics 36(7) 647-678 https://doi.org/10.1071/IS21082
Submitted: 20 December 2021  Accepted: 1 March 2022   Published: 3 August 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

The spider genus Metagonia has been represented on the Galápagos Islands by two blind species inhabiting lava tubes on Isabela and Santa Cruz. Epigean relatives had not been found on Galápagos and were thus thought to be extinct. During a collecting trip in 2019 we found two epigean species and a third blind hypogean species. Here we describe these new species based on males and females, redescribe both previously known species, and add all five species to the recently published molecular phylogeny of Pholcidae, together with more than 30 further congeners from the mainland. Galápagos Metagonia is recovered as a monophyletic group within the South American–Caribbean M. potiguar group. Galápagos Metagonia is divided into an epigean clade and a hypogean clade. Each species is restricted to an individual island (Isabela or Santa Cruz; with one possible exception), suggesting that the epigean Metagonia species are native rather than introduced.

ZooBank registration: http://zoobank.org/References/0812B715-8446-4B28-BCE0-6AB504BBEC7E.

Keywords: Ecuador, endemic, island, lava tubes, Metagonia, new species, phylogeny, taxonomy, troglomorphism.


References

Aberer, AJ, Krompass, D, and Stamatakis, A (2013). Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Systematic Biology 62, 162–166.
Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice.Crossref | GoogleScholarGoogle Scholar |

Ali, JR, and Aitchison, JC (2014). Exploring the combined role of eustasy and oceanic island thermal subsidence in shaping biodiversity on the Galápagos. Journal of Biogeography 41, 1227–1241.
Exploring the combined role of eustasy and oceanic island thermal subsidence in shaping biodiversity on the Galápagos.Crossref | GoogleScholarGoogle Scholar |

Astrin, JJ, Höfer, H, Spelda, J, Holstein, J, Bayer, S, Hendrich, L, Huber, BA, Kielhorn, K-H, Krammer, H-J, Lemke, M, Monje, JC, Morinière, J, Rulik, B, Petersen, M, Janssen, H, and Muster, C (2016). Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLOS ONE 11, e0162624.
Towards a DNA barcode reference database for spiders and harvestmen of Germany.Crossref | GoogleScholarGoogle Scholar |

Baert, L (2013). Summary of our present knowledge of the spider communities of the Galápagos archipelago. First analysis of the spider communities of the islands Santa Cruz and Isabela. Belgian Journal of Zoology 143, 159–185.

Baert, L (2014). New spider species (Araneae) from the Galápagos Islands (Ecuador). Bulletin de la Société royale belge d’Entomologie 149, 263–271.

Bensted-Smith R (ed.) (2002) ‘A Biodiversity vision for the Galapagos Islands.’ (Charles Darwin Foundation and World Wildlife Fund: Puerto Ayora, Galápagos)

Buchholz, S, Baert, L, Rodríguez, J, Causton, CE, and Jäger, H (2020). Spiders in Galapagos – diversity, biogeography and origin. Biological Journal of the Linnean Society 130, 41–48.
Spiders in Galapagos – diversity, biogeography and origin.Crossref | GoogleScholarGoogle Scholar |

Bungartz F, Herrera H, Jaramillo P, Tirado N, Jíménez-Uzcátegui G, Ruiz D, Guézou A, Ziemmeck F (Eds) (2017) ‘Charles Darwin Foundation Galapagos species checklist.’ (Charles Darwin Foundation: Puerto Ayora, Galápagos) Available at www.darwinfoundation.org/en/datazone/checklists-archive

Capella-Gutiérrez, S, Silla-Martínez, JM, and Gabaldón, T (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.
trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Cock, PJA, Antao, T, Chang, JT, Chapman, BA, Cox, CJ, Dalke, A, Friedberg, I, Hamelryck, T, Kauff, F, Wilczynski, B, and de Hoon, MJL (2009). Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423.
Biopython: freely available Python tools for computational molecular biology and bioinformatics.Crossref | GoogleScholarGoogle Scholar |

Dimitrov, D, Astrin, JJ, and Huber, BA (2013). Pholcid spider molecular systematics revisited, with new insights into the biogeography and the evolution of the group. Cladistics 29, 132–146.
Pholcid spider molecular systematics revisited, with new insights into the biogeography and the evolution of the group.Crossref | GoogleScholarGoogle Scholar |

Eberle, J, Dimitrov, D, Valdez-Mondragón, A, and Huber, BA (2018). Microhabitat change drives diversification in pholcid spiders. BMC Evolutionary Biology 18, 141.
Microhabitat change drives diversification in pholcid spiders.Crossref | GoogleScholarGoogle Scholar |

Gertsch, WJ (1971). A report on some Mexican cave spiders. Association of Mexican Cave Studies, Bulletin 4, 47–111.

Gertsch, WJ (1977). Report on cavernicole and epigean spiders from the Yucatan Peninsula. Association of Mexican Cave Studies, Bulletin 6, 103–131.

Gertsch, WJ (1986). The spider genus Metagonia (Araneae: Pholcidae) in North America, Central America, and the West Indies. Texas Memorial Museum, Speleological Monographs 1, 39–62.

Gertsch, WJ, and Peck, SB (1992). The pholcid spiders of the Galápagos Islands, Ecuador (Araneae: Pholcidae). Canadian Journal of Zoology 70, 1185–1199.
The pholcid spiders of the Galápagos Islands, Ecuador (Araneae: Pholcidae).Crossref | GoogleScholarGoogle Scholar |

Grehan, J (2001). Biogeography and evolution of the Galapagos: integration of the biological and geological evidence. Biological Journal of the Linnean Society 74, 267–287.
Biogeography and evolution of the Galapagos: integration of the biological and geological evidence.Crossref | GoogleScholarGoogle Scholar |

Guézou, A, Trueman, M, Buddenhagen, CE, Chamorro, S, Guerrero, AM, Pozo, P, and Atkinson, R (2010). An extensive alien plant inventory from the inhabited areas of Galapagos. PLoS One 5, e10276.
An extensive alien plant inventory from the inhabited areas of Galapagos.Crossref | GoogleScholarGoogle Scholar |

Guindon, S, Dufayard, J-F, Lefort, V, Anisimova, M, Hordijk, W, and Gascuel, O (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar |

Heads, M, and Grehan, JR (2021). The Galápagos Islands: biogeographic patterns and geology. Biological Reviews 96, 1160–1185.
The Galápagos Islands: biogeographic patterns and geology.Crossref | GoogleScholarGoogle Scholar |

Hernández PJJ, Izquierdo ZI, Oromí MP (1992) Catálogo espeleológico de las Islas Galápagos. In ‘Resultados Cientificos del Proyecto Galápagos, Patrimonio de la Humanidad’, (Eds JJ Bacallado, J Ortea) Vol. 2, pp. 71–179. (Grafican: Tenerife, Spain)

Howarth, FG (1987). The evolution of non-relictual tropical troglobites. International Journal of Speleology 16, 1–16.
The evolution of non-relictual tropical troglobites.Crossref | GoogleScholarGoogle Scholar |

Huber, BA (1997). On American ‘Micromerys’ and Metagonia (Araneae, Pholcidae), with notes on natural history and genital mechanics. Zoologica Scripta 25, 341–363.
On American ‘Micromerys’ and Metagonia (Araneae, Pholcidae), with notes on natural history and genital mechanics.Crossref | GoogleScholarGoogle Scholar |

Huber, BA (2000). New World pholcid spiders (Araneae: Pholcidae): a revision at generic level. Bulletin of the American Museum of Natural History 254, 1–348.
New World pholcid spiders (Araneae: Pholcidae): a revision at generic level.Crossref | GoogleScholarGoogle Scholar |

Huber, BA (2004). Evidence for functional segregation in the directionally asymmetric male genitalia of the spider Metagonia mariguitarensis (Gonzalez-Sponga) (Pholcidae: Araneae). Journal of Zoology, London 262, 317–326.
Evidence for functional segregation in the directionally asymmetric male genitalia of the spider Metagonia mariguitarensis (Gonzalez-Sponga) (Pholcidae: Araneae).Crossref | GoogleScholarGoogle Scholar |

Huber, BA (2005). High species diversity, male-female coevolution, and metaphyly in Southeast Asian pholcid spiders: the case of Belisana Thorell 1898 (Araneae, Pholcidae). Zoologica 155, 1–126.

Huber, BA (2011). Phylogeny and classification of Pholcidae (Araneae): an update. Journal of Arachnology 39, 211–222.
Phylogeny and classification of Pholcidae (Araneae): an update.Crossref | GoogleScholarGoogle Scholar |

Huber, BA (2018). Cave-dwelling pholcid spiders (Araneae, Pholcidae): a review. Subterranean Biology 26, 1–18.
Cave-dwelling pholcid spiders (Araneae, Pholcidae): a review.Crossref | GoogleScholarGoogle Scholar |

Huber, BA (2021). First Northwest African species of the spider genus Artema, from caves in Morocco, with notes on body size in pholcid spiders (Araneae, Pholcidae). Zootaxa 4984, 324–334.
First Northwest African species of the spider genus Artema, from caves in Morocco, with notes on body size in pholcid spiders (Araneae, Pholcidae).Crossref | GoogleScholarGoogle Scholar |

Huber, BA (2022). Revisions of Holocnemus and Crossopriza: the spotted-leg clade of Smeringopinae (Araneae, Pholcidae). European Journal of Taxonomy 795, 1–241.
Revisions of Holocnemus and Crossopriza: the spotted-leg clade of Smeringopinae (Araneae, Pholcidae).Crossref | GoogleScholarGoogle Scholar |

Huber, BA, and Carvalho, LS (2019). Filling the gaps: descriptions of unnamed species included in the latest molecular phylogeny of Pholcidae (Araneae). Zootaxa 4546, 1–96.
Filling the gaps: descriptions of unnamed species included in the latest molecular phylogeny of Pholcidae (Araneae).Crossref | GoogleScholarGoogle Scholar |

Huber, BA, and Herrera, MG (2022). The pholcid spiders of Ecuador – a preliminary report. FigShare 2021, ver02.
The pholcid spiders of Ecuador – a preliminary report.Crossref | GoogleScholarGoogle Scholar |

Huber, BA, and Nuñeza, OM (2015). Evolution of genital asymmetry, exaggerated eye stalks, and extreme palpal elongation in Panjange spiders (Araneae: Pholcidae). European Journal of Taxonomy 169, 1–46.
Evolution of genital asymmetry, exaggerated eye stalks, and extreme palpal elongation in Panjange spiders (Araneae: Pholcidae).Crossref | GoogleScholarGoogle Scholar |

Huber, BA, and van Harten, A (2001). Ninetis subtilissima Simon, 1890 (Araneae: Pholcidae): redescription and SEM ultrastructure. American Museum Novitates 2001, 3336.
Ninetis subtilissima Simon, 1890 (Araneae: Pholcidae): redescription and SEM ultrastructure.Crossref | GoogleScholarGoogle Scholar |

Huber, BA, and Villarreal, O (2020). On Venezuelan pholcid spiders (Araneae, Pholcidae. European Journal of Taxonomy 718, 1–317.
On Venezuelan pholcid spiders (Araneae, Pholcidae.Crossref | GoogleScholarGoogle Scholar |

Huber, BA, Sinclair, B, and Schmitt, M (2007). The evolution of asymmetric genitalia in spiders and insects. Biological Reviews 82, 647–698.
The evolution of asymmetric genitalia in spiders and insects.Crossref | GoogleScholarGoogle Scholar |

Huber, BA, Carvalho, LS, and Benjamin, SP (2014). On the New World spiders previously misplaced in Leptopholcus: molecular and morphological analyses and descriptions of four new species (Araneae, Pholcidae). Invertebrate Systematics 28, 432–450.
On the New World spiders previously misplaced in Leptopholcus: molecular and morphological analyses and descriptions of four new species (Araneae, Pholcidae).Crossref | GoogleScholarGoogle Scholar |

Huber, BA, Eberle, J, and Dimitrov, D (2018). The phylogeny of pholcid spiders: a critical evaluation of relationships suggested by molecular data (Araneae, Pholcidae. ZooKeys 789, 51–101.
The phylogeny of pholcid spiders: a critical evaluation of relationships suggested by molecular data (Araneae, Pholcidae.Crossref | GoogleScholarGoogle Scholar |

Johnson, MP, and Raven, PH (1973). Species number and endemism: the Galápagos Archipelago revisited. Science 179, 893–895.
Species number and endemism: the Galápagos Archipelago revisited.Crossref | GoogleScholarGoogle Scholar |

Junier, T, and Zdobnov, EM (2010). The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26, 1669–1670.
The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell.Crossref | GoogleScholarGoogle Scholar |

Kalyaanamoorthy, S, Minh, BQ, Wong, TKF, von Haeseler, A, and Jermiin, LS (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar |

Katoh, K, and Standley, DM (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar |

Kearse, M, Moir, R, Wilson, A, Stones-Havas, S, Cheung, M, Sturrock, S, Buxton, S, Cooper, A, Markowitz, S, Duran, C, Thierer, T, Ashton, B, Meintjes, P, and Drummond, A (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar |

Leclerc, C, Magneville, C, and Bellard, C (2021). Conservation hotspots of insular endemic mammalian diversity at risk of extinction across a multidimensional approach. Diversity and Distributions. , .
Conservation hotspots of insular endemic mammalian diversity at risk of extinction across a multidimensional approach.Crossref | GoogleScholarGoogle Scholar |

Letunic, I, and Bork, P (2021). Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49, W293–W296.
Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation.Crossref | GoogleScholarGoogle Scholar |

Minh, BQ, Nguyen, MAT, and von Haeseler, A (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188–1195.
Ultrafast approximation for phylogenetic bootstrap.Crossref | GoogleScholarGoogle Scholar |

Minh, BQ, Schmidt, HA, Chernomor, O, Schrempf, D, Woodhams, MD, von Haeseler, A, and Lanfear, R (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 1530–1534.
IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era.Crossref | GoogleScholarGoogle Scholar |

Peck, SB (1990). Eyeless arthropods of the Galapagos Islands, Ecuador: composition and origin of the cryptozoic fauna of a young, tropical, oceanic archipelago. Biotropica 22, 366–381.
Eyeless arthropods of the Galapagos Islands, Ecuador: composition and origin of the cryptozoic fauna of a young, tropical, oceanic archipelago.Crossref | GoogleScholarGoogle Scholar |

Ratnasingham, S, and Hebert, PDN (2007). BOLD: the Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes 7, 355–364.
BOLD: the Barcode of Life Data System (http://www.barcodinglife.org).Crossref | http://www.barcodinglife.org).&journal=Molecular Ecology Notes&volume=7&pages=355-364&publication_year=2007&author=S%20Ratnasingham&hl=en&doi=10.1111% 2Fj.1471-8286.2007.01678.x" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar |

Sanderson, MJ, and Shaffer, HB (2002). Troubleshooting molecular phylogenetic analyses. Annual Review of Ecology and Systematics 33, 49–72.
Troubleshooting molecular phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Simon E (1893) ‘Histoire Naturelle des Araignées’, 2nd edn. Vol. 12, pp. 256–488. (Roret: Paris, France)

Srivathsan, A, Lee, L, Katoh, K, Hartop, E, Kutty, SN, Wong, J, Yeo, D, and Meier, R (2021). ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biology 19, 217.
ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar |

Steenwyk, JL, Buida III, TJ, Li, Y, Shen, X-X, and Rokas, A (2020). ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biology 18, e3001007.
ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference.Crossref | GoogleScholarGoogle Scholar |

Steinfartz S (2011) When hotspots meet: the Galápagos Islands: a hotspot of species endemism based on a volcanic hotspot centre. In ‘Biodiversity Hotspots’. (Eds FE Zachos, JC Habel) pp. 453–468. (Springer)
| Crossref |

Suyama, M, Torrents, D, and Bork, P (2006). PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34, W609–W612.
PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments.Crossref | GoogleScholarGoogle Scholar |

Tabei, Y, Kiryu, H, Kin, T, and Asai, K (2008). A fast structural multiple alignment method for long RNA sequences. BMC Bioinformatics 9, 33.
A fast structural multiple alignment method for long RNA sequences.Crossref | GoogleScholarGoogle Scholar |

Talavera, G, and Castresana, J (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar |

Toral-Granda, MV, Causton, CE, Jäger, H, Trueman, M, Izurieta, JC, Araujo, E, Cruz, M, Zander, KK, Izurieta, A, and Garnett, ST (2017). Alien species pathways to the Galápagos Islands, Ecuador. PLoS ONE 19, e0184379.
Alien species pathways to the Galápagos Islands, Ecuador.Crossref | GoogleScholarGoogle Scholar |

Truett, GE, Heeger, P, Mynatt, RL, Truett, AA, Walker, JA, and Warman, ML (2000). Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29, 52–54.
Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT).Crossref | GoogleScholarGoogle Scholar |

Willerslev, E, Hansen, AJ, Nielsen, KK, and Adsersen, H (2002). Number of endemic and native plant species in the Galápagos Archipelago in relation to geographical parameters. Ecography 25, 109–119.
Number of endemic and native plant species in the Galápagos Archipelago in relation to geographical parameters.Crossref | GoogleScholarGoogle Scholar |

Yang, C, Zheng, Y, Tan, S, Meng, G, et al. (2020). Efficient COI barcoding using high throughput single-end 400 bp sequencing. BMC Genomics 21, 862.
Efficient COI barcoding using high throughput single-end 400 bp sequencing.Crossref | GoogleScholarGoogle Scholar |