Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Phylogenetic position of the genera Caryandoides, Paratoacris, Fer and Longchuanacris (Orthoptera : Acrididae) revealed by complete mitogenome sequences

Xiang Zeng A B C , Haiyang Xu A B C , Jingxiao Gu A B C , Benyong Mao D , Zhilin Chen https://orcid.org/0000-0001-6564-1528 B F , Yuan Huang E and Jianhua Huang https://orcid.org/0000-0001-9850-5119 A B C F
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Insect Evolution and Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha, Hunan, 410004, People’s Republic of China.

B Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, 541004, People’s Republic of China.

C Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Central South University of Forestry and Technology, Ministry of Education, Changsha, Hunan, 410004, People’s Republic of China.

D College of Agriculture and Biology Science, Dali University, Dali, Yunnan, 671003, People’s Republic of China.

E College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, 710119, People’s Republic of China.

F Corresponding authors. Email: 493643905@qq.com; caniscn@aliyun.com

Invertebrate Systematics 35(7) 725-741 https://doi.org/10.1071/IS20077
Submitted: 19 October 2020  Accepted: 29 March 2021   Published: 23 September 2021

Abstract

Many taxa in the Acrididae have controversial phylogenetic positions. A typical example of such controversies is the phylogenetic positions of the genera Caryandoides, Paratoacris, Fer and Longchuanacris, as well as some other related taxa, which were placed in Oxyinae by some authors, but were considered members of the subfamily Catantopinae by others. In this study, the complete mitogenomes of nine species were sequenced using next-generation sequencing, the characteristics of the newly sequenced mitogenomes are presented briefly, and the phylogeny of the Oxyinae and Catantopinae are reconstructed using a selected dataset of mitogenome sequences under maximum likelihood and Bayesian inference frameworks. The results show that the four controversial genera were consistently assigned to the subfamily Oxyinae rather than Catantopinae in all phylogenetic trees deduced from different datasets under different frameworks, and this finding is entirely consistent with their morphological characters. Therefore, it is more appropriate to place them in Oxyinae rather than Catantopinae. In addition, the results from our analysis also confirm the membership of the genus Apalacris in Coptacrinae rather than Catantopinae, and indicate the uncertainty in the phylogenetic position of the genus Traulia, and a more in-depth study is necessary to resolve the relationship of Traulia with other catantopine groups or Coptacrinae.

Keywords: Acrididae, Caryandoides, Fer, Longchuanacris, mitogenome, Orthoptera, Paratoacris, phylogenetic position.


References

Abascal, F., Zardoya, R., and Telford, M. J. (2010). TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research 38, W7–W13.
TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations.Crossref | GoogleScholarGoogle Scholar | 20435676PubMed |

Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M., and Stadler, P. F. (2013). MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69, 313–319.
MITOS: improved de novo metazoan mitochondrial genome annotation.Crossref | GoogleScholarGoogle Scholar | 22982435PubMed |

Bey-Bienko, G. Ya. (1935). Acridiidae and Tettigoniidae from Luzon Philippine Islands. Philippine Journal of Science 57, 377–407.

Bolívar, I. (1918). Estudios entomologicos. Tercera parte. Seccion Oxyae (Orth. Acrididae o Locustidae). Trabajos del Museo Nacional de Ciencias Naturales de Madrid, Serie Zoológica 34, 1–43.

Boore, J. L. (1999). Animal mitochondrial genomes. Nucleic Acids Research 27, 1767–1780.
Animal mitochondrial genomes.Crossref | GoogleScholarGoogle Scholar | 10101183PubMed |

Brunner von Wattenwyl, G. (1893). Révision du système des Orthoptères et description des espèces rapportées par M. Leonardo Fea de Birmanie. Annali del Museo Civico di Storia Naturale di Genova 13, 1–230.

Chang, H., Nie, Y., Zhang, N., Zhang, X., Sun, H., Mao, Y., Qiu, Z. Y., and Huang, Y. (2020a). MtOrt: an empirical mitochondrial amino acid substitution model for evolutionary studies of Orthoptera insects. BMC Evolutionary Biology 20, 57.
MtOrt: an empirical mitochondrial amino acid substitution model for evolutionary studies of Orthoptera insects.Crossref | GoogleScholarGoogle Scholar | 32429841PubMed |

Chang, H., Qiu, Z., Yuan, H., Wang, X., Li, X., Sun, H., Guo, X., Lu, Y., Feng, X., Majid, M., and Huang, Y. (2020b). Evolutionary rates of and selective constraints on the mitochondrial genomes of Orthoptera insects with different wing types. Molecular Phylogenetics and Evolution 145, 106734.
Evolutionary rates of and selective constraints on the mitochondrial genomes of Orthoptera insects with different wing types.Crossref | GoogleScholarGoogle Scholar | 31972240PubMed |

Chapco, W. (2013). A note on the molecular phylogeny of a small sample of catantopine grasshoppers. Journal of Orthoptera Research 22, 15–20.
A note on the molecular phylogeny of a small sample of catantopine grasshoppers.Crossref | GoogleScholarGoogle Scholar |

Cigliano, M. M., Braun, H., Eades, D. C., and Otte, D. (2020). Orthoptera Species File. Version 5.0/5.0. Available at http://Orthoptera.SpeciesFile.org [Verified 15 September 2020].

Darty, K., Denise, A., and Ponty, Y. (2009). VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25, 1974–1975.
VARNA: interactive drawing and editing of the RNA secondary structure.Crossref | GoogleScholarGoogle Scholar | 19398448PubMed |

Dirsh, V. M. (1956). The phallic complex in Acridoidea (Orthoptera) in relation to taxonomy. Transactions of the Royal Entomological Society of London 108, 223–356.
The phallic complex in Acridoidea (Orthoptera) in relation to taxonomy.Crossref | GoogleScholarGoogle Scholar |

Dirsh, V. M. (1961). A preliminary revision of the families and subfamilies of Acridoidea (Orthoptera). Bulletin of the British Museum (Natural History), Entomology Series 10, 351–419.
A preliminary revision of the families and subfamilies of Acridoidea (Orthoptera).Crossref | GoogleScholarGoogle Scholar |

Dong, J. J., Guan, D. L., and Xu, S. Q. (2016). Complete mitogenome of the semi-aquatic grasshopper Oxya intricata (Stal.) (Insecta: Orthoptera: Catantopidae). Mitochondrial DNA – A. DNA Mapping, Sequencing, and Analysis 27, 3233–3234.
Complete mitogenome of the semi-aquatic grasshopper Oxya intricata (Stal.) (Insecta: Orthoptera: Catantopidae).Crossref | GoogleScholarGoogle Scholar |

Eades, D. C. (2000). Evolutionary relationships of phallic structures of Acridomorpha (Orthoptera). Journal of Orthoptera Research 9, 181–210.
Evolutionary relationships of phallic structures of Acridomorpha (Orthoptera).Crossref | GoogleScholarGoogle Scholar |

Erixon, P., Svennblad, B., Britton, T., and Oxelman, B. (2003). Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Systematic Biology 52, 665–673.
Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics.Crossref | GoogleScholarGoogle Scholar | 14530133PubMed |

Fenn, J. D., Song, H., Cameron, S. L., and Whiting, M. F. (2008). A mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Molecular Phylogenetics and Evolution 49, 59–68.
A mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data.Crossref | GoogleScholarGoogle Scholar | 18672078PubMed |

Hahn, C., Bachmann, L., and Chevreux, B. (2013). Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative mapping approach. Nucleic Acids Research 41, e129.
Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads – a baiting and iterative mapping approach.Crossref | GoogleScholarGoogle Scholar | 23661685PubMed |

Hillis, D. M., and Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42, 182–192.
An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Hoang, D. T., Chernomor, O., Haeseler, A., Minh, B. Q., and Vinh, L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522.
UFBoot2: improving the ultrafast bootstrap approximation.Crossref | GoogleScholarGoogle Scholar | 29077904PubMed |

Hollis, D. (1975). A review of the subfamily Oxyinae (Orthoptera: Acridoidea). Bulletin of the British Museum (Natural History), Entomology Series 31, 189–234.
A review of the subfamily Oxyinae (Orthoptera: Acridoidea).Crossref | GoogleScholarGoogle Scholar |

Hu, Z., Xu, J. S., and Mao, B. Y. (2016). Phylogenetic relationships of Caryandinae based on mitochondrial COI gene sequences. Journal of Dali University 1, 57–61.

Hu, Z., Guan, D. L., and Mao, B. Y. (2017). Description of a new species, Caryanda Stål, 1878 (Acrididae, Orthoptera) from China. Oriental Insects 51, 124–134.
Description of a new species, Caryanda Stål, 1878 (Acrididae, Orthoptera) from China.Crossref | GoogleScholarGoogle Scholar |

Hu, Z., Han, Y. P., Guan, D. L., and Mao, B. Y. (2018). Characterization of the complete mitochondrial genome of the Yunnan endemic grasshopper Longchuanacris curvifurculus (Insecta: Orthoptera: Catantopidae). Mitochondrial DNA – B. Resources 3, 670–671.
Characterization of the complete mitochondrial genome of the Yunnan endemic grasshopper Longchuanacris curvifurculus (Insecta: Orthoptera: Catantopidae).Crossref | GoogleScholarGoogle Scholar | 33474279PubMed |

Huang, J. H., Zheng, Z. M., Huang, Y., and Zhou, S. Y. (2009). New synonymies in Chinese Oxyinae (Orthoptera: Acrididae). Zootaxa 1976, 39–55.
New synonymies in Chinese Oxyinae (Orthoptera: Acrididae).Crossref | GoogleScholarGoogle Scholar |

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Haeseler, A., and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar | 28481363PubMed |

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 1547–1549.
MEGA X: molecular evolutionary genetics analysis across computing platforms.Crossref | GoogleScholarGoogle Scholar | 29722887PubMed |

Leavitt, J. R., Hiatt, K. D., Whiting, M. F., and Song, H. (2013). Searching for the optimal data partitioning strategy in mitochondrial phylogenomics: a phylogeny of Acridoidea (Insecta: Orthoptera: Caelifera) as a case study. Molecular Phylogenetics and Evolution 67, 494–508.
Searching for the optimal data partitioning strategy in mitochondrial phylogenomics: a phylogeny of Acridoidea (Insecta: Orthoptera: Caelifera) as a case study.Crossref | GoogleScholarGoogle Scholar | 23454468PubMed |

Li, F. S. (1994). A new genus and a new species of Amphientomidae from China (Psocoptera: Troctomorpha). Wuyi Kexue 11, 76–78.

Li, T. S., and Jin, X. B. (1984). One new genus and four new species of locust from Dayao Mountains of Guangxi (Orthoptera: Acridoidea: Catantopidae). Acta Entomologica Sinica 27, 197–204.

Li, H. C., and Xia, K. L. (2006). ‘Fauna Sinica, Insecta, Vol. 43, Orthoptera, Acridoidea, Catantopidae.’ (Science Press: Beijing, PR China.)

Li, B. P., Liu, Z. W., and Zheng, Z. M. (2011). Phylogeny and classification of the Catantopidae at the tribal level (Orthoptera, Acridoidea). ZooKeys 148, 209–255.
Phylogeny and classification of the Catantopidae at the tribal level (Orthoptera, Acridoidea).Crossref | GoogleScholarGoogle Scholar |

Li, X. J., Zhi, Y. C., Lang, L., and Yin, X. C. (2014). The complete mitochondrial genome of Filchnerella beicki Ramme, 1931 (Orthoptera: Acridoidea: Pamphagidae). Mitochondrial DNA 25, 348–349.
The complete mitochondrial genome of Filchnerella beicki Ramme, 1931 (Orthoptera: Acridoidea: Pamphagidae).Crossref | GoogleScholarGoogle Scholar | 23848213PubMed |

Li, X. J., Zhi, Y. C., Liu, G. J., Yin, X. C., and Zhang, D. C. (2015). The complete mitochondrial genome of Asiotmethis jubatus (Uvarov, 1926) (Orthoptera: Acridoidea: Pamphagidae). Mitochondrial DNA 26, 785–786.
The complete mitochondrial genome of Asiotmethis jubatus (Uvarov, 1926) (Orthoptera: Acridoidea: Pamphagidae).Crossref | GoogleScholarGoogle Scholar | 24409906PubMed |

Li, R., Shu, X. H., Li, X. D., Meng, L., and Li, B. P. (2019). Comparative mitogenome analysis of three species and monophyletic inference of Catantopinae (Orthoptera: Acridoidea). Genomics 111, 1728–1735.
Comparative mitogenome analysis of three species and monophyletic inference of Catantopinae (Orthoptera: Acridoidea).Crossref | GoogleScholarGoogle Scholar | 30503746PubMed |

Liu, Z. W., and Li, B. P. (1995). A new genus and two new species of Catantopidae from Hunan Province, China (Orthoptera: Acridoidea). Entomologia Sinica 2, 104–110.
A new genus and two new species of Catantopidae from Hunan Province, China (Orthoptera: Acridoidea).Crossref | GoogleScholarGoogle Scholar |

Liu, D., Dong, Z., Zhang, D., Gu, Y., Guo, P., Han, R., and Jiang, G. (2008). Molecular phylogeny of the higher category of Acrididae (Orthoptera: Acridoidea). Zoological Research 6, 585–591.

Mao, B. Y., Ren, G. D., and Ou, X. H. (2011). ‘Fauna, Distribution Pattern and Adaptability on Acridoidea from Yunnan.’ (China Forestry Publishing House: Beijing, PR China.)

Meiklejohn, K. A., Danielson, M. J., Faircloth, B. C., Glenn, T. C., Braun, E. L., and Kimball, R. T. (2014). Incongruence among different mitochondrial regions: a case study using complete mitogenomes. Molecular Phylogenetics and Evolution 78, 314–323.
Incongruence among different mitochondrial regions: a case study using complete mitogenomes.Crossref | GoogleScholarGoogle Scholar | 24929245PubMed |

Moore, W. S. (1997). Mitochondrial-gene trees versus nuclear-gene trees, a reply to Hoelzer. Evolution 51, 627–629.
Mitochondrial-gene trees versus nuclear-gene trees, a reply to Hoelzer.Crossref | GoogleScholarGoogle Scholar | 28565358PubMed |

Mugleston, J., Naegle, M., Song, H., Bybee, S. M., Ingley, S., Suvorov, A., and Whiting, M. F. (2016). Reinventing the leaf: multiple origins of leaf-like wings in katydids (Orthoptera: Tettigoniidae). Invertebrate Systematics 30, 335–352.
Reinventing the leaf: multiple origins of leaf-like wings in katydids (Orthoptera: Tettigoniidae).Crossref | GoogleScholarGoogle Scholar |

Nguyen, L.-T., Schmidt, H. A., Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar | 25371430PubMed |

Otte, D. (1995). ‘Orthoptera Species File 4 Grasshoppers (Acridomorpha) C.’ (Orthopterists’ Society & Academy of Natural Sciences of Philadelphia: Philadelphia, PA, USA.)

Özdikmen, H. (2009). Substitute names for two preoccupied genera (Orthoptera: Acrididae and Tettigoniidae). Munis Entomology & Zoology 4, 606–607.

Raszick, T. J., and Song, H. (2016). The ecotype paradigm: testing the concept in an ecologically divergent grasshopper. Insect Systematics & Evolution 47, 363–387.
The ecotype paradigm: testing the concept in an ecologically divergent grasshopper.Crossref | GoogleScholarGoogle Scholar |

Rehn, J. A. C. (1957). ‘The Grasshoppers and Locusts (Acridoidea) of Australia. III. Family Acrididae: Superfamily Cyrtacanthacridinae. Tribes Oxyini, Spathosternini and Praxibulini.’ (CSIRO: Melbourne, Vic., Australia.)

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Sheffield, N. C., Hiatt, K. D., Valentine, M. C., Song, H., and Whiting, M. F. (2010). Mitochondrial genomics in Orthoptera using MOSAS. Mitochondrial DNA 21, 87–104.
Mitochondrial genomics in Orthoptera using MOSAS.Crossref | GoogleScholarGoogle Scholar | 20795780PubMed |

Shi, Q. Y., Zheng, J. Y., Zhi, Y. C., and Li, X. J. (2016). The complete mitochondrial genome of Sinotmethis brachypterus Zheng & Xi, 1985 (Orthoptera: Acridoidea: Pamphagidae: Prionotropisinae). Mitochondrial DNA – A. DNA Mapping, Sequencing, and Analysis 27, 4063–4064.
The complete mitochondrial genome of Sinotmethis brachypterus Zheng & Xi, 1985 (Orthoptera: Acridoidea: Pamphagidae: Prionotropisinae).Crossref | GoogleScholarGoogle Scholar |

Song, H., Amédégnato, C., Cigliano, M. M., Desutter-Grandcolas, L., Heads, S. W., Huang, Y., Otte, D., and Whiting, M. F. (2015). 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics 31, 621–651.
300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling.Crossref | GoogleScholarGoogle Scholar |

Song, H., Mariño-Pérez, R., Woller, D. A., and Cigliano, M. M. (2018). Evolution, diversification, and biogeography of grasshoppers (Orthoptera: Acrididae). Insect Systematics and Diversity 2, 3.
Evolution, diversification, and biogeography of grasshoppers (Orthoptera: Acrididae).Crossref | GoogleScholarGoogle Scholar |

Storozhenko, S. Yu. (2018). A new species of the genus Mesambria Stål, 1878 with notes on the tribe Mesambriini (Orthoptera: Acrididae, Catantopinae). Zootaxa 4418, 55–65.
A new species of the genus Mesambria Stål, 1878 with notes on the tribe Mesambriini (Orthoptera: Acrididae, Catantopinae).Crossref | GoogleScholarGoogle Scholar |

Tang, M., Tan, M. H., Meng, G. L., Yang, S. Z., Su, X., Liu, S. L., Song, W. H., Li, Y. Y., Wu, Q., Zhang, A. B., and Zhou, X. (2014). Multiplex sequencing of pooled mitochondrial genomes – a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Research 42, e166.
Multiplex sequencing of pooled mitochondrial genomes – a crucial step toward biodiversity analysis using mito-metagenomics.Crossref | GoogleScholarGoogle Scholar | 25294837PubMed |

Trifinopoulos, J., Nguyen, L.-T., Haeseler, A., and Minh, B. Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44, W232–W235.
W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis.Crossref | GoogleScholarGoogle Scholar | 27084950PubMed |

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |

Wei, T., and Huang, J. H. (2012). To the synonymy of Traulia brachypeza Bi, 1986 (Orthoptera: Acrididae, Catantopinae). Far Eastern Entomologist 255, 11–15.

Willemse, C. (1921). Bijdrage tot de kennis der Orthoptera ss. van den Nederlandsch Indischen Archipel en omliggende gebieden. Zoölogische Mededeelingen 6, 1–44.

Willemse, C. (1956). Synopsis of the Acridoidea of the Indo-Malayan and adjacent regions (Insecta, Orthoptera). Part II. Fam. Acrididae, subfam. Catantopinae, part one. Publicatiës van her Natuurhistorisch Genootschap in Limberg 8, 1–226.

Xia, K. L. (1994). ‘Fauna Sinica, Insecta. Vol. 4. Orthoptera, Acridoidea: Pamphagidae, Chrotogonidae, Pyrgomorphidae.’ (Science Press: Beijing, PR China.)

Xiao, B., Feng, X., Miao, W. J., and Jiang, G. F. (2012). The complete mitochondrial genome of grouse locust Tetrix japonica (Insecta: Orthoptera: Tetrigoidea). Mitochondrial DNA 23, 288–289.
The complete mitochondrial genome of grouse locust Tetrix japonica (Insecta: Orthoptera: Tetrigoidea).Crossref | GoogleScholarGoogle Scholar | 22471647PubMed |

Yang, H., and Huang, Y. (2011). Analysis of the complete mitochondrial genome sequence of Pielomastax zhengi. Zoological Research 32, 353–362.
| 21842530PubMed |

Yang, M. R., Zhou, Z. J., Chang, Y. L., and Shi, F. M. (2012). The mitochondrial genome of the quiet-calling katydids, Xizicus fascipes (Orthoptera: Tettigoniidae: Meconematinae). Journal of Genetics 91, 141–153.
The mitochondrial genome of the quiet-calling katydids, Xizicus fascipes (Orthoptera: Tettigoniidae: Meconematinae).Crossref | GoogleScholarGoogle Scholar | 22942084PubMed |

Yang, J., Liu, Y., and Liu, N. (2016). The complete mitochondrial genome of the Xenocatantops brachycerus (Orthoptera: Catantopidae). Mitochondrial DNA – A. DNA Mapping, Sequencing, and Analysis 27, 2844–2845.
The complete mitochondrial genome of the Xenocatantops brachycerus (Orthoptera: Catantopidae).Crossref | GoogleScholarGoogle Scholar |

Yin, X. C., and Xia, K. L. (2003). ‘Fauna Sinica, Insecta. Vol. 32. Orthoptera, Acridoidea, Gomphoceridae and Acrididae.’ (Science Press: Beijing, PR China.)

Yuan, H., Qiu, Z. Y., Yang, C., and Huang, Y. (2019). The complete mitochondrial genome sequence of Caryanda elegans (Orthoptera: Acrididae). Mitochondrial DNA – B. Resources 4, 1580–1581.
The complete mitochondrial genome sequence of Caryanda elegans (Orthoptera: Acrididae).Crossref | GoogleScholarGoogle Scholar |

Zhang, C. Y., and Huang, Y. (2008). Complete mitochondrial genome of Oxya chinensis (Orthoptera, Acridoidea). Acta Biochimica et BiophysicaSinica 40, 7–18.
Complete mitochondrial genome of Oxya chinensis (Orthoptera, Acridoidea).Crossref | GoogleScholarGoogle Scholar |

Zhang, H. L., Huang, Y., Lin, L. L., Wang, X. Y., and Zheng, Z. M. (2013). The phylogeny of the Orthoptera (Insecta) as deduced from mitogenomic gene sequences. Zoological Studies 52, 37.
The phylogeny of the Orthoptera (Insecta) as deduced from mitogenomic gene sequences.Crossref | GoogleScholarGoogle Scholar |

Zheng, Z. M., and Fu, P. (1989). A new genus and species of grasshopper from Yunnan (Orthoptera: Catantopidae). Dong Wu Fen Lei Xue Bao 14, 305–308.

Zheng, Z. M., and Xia, K. L. (1998). ‘Fauna Sinica, Insecta. Vol. 10. Orthoptera, Acridoidea, Oedipodidae and Arcypteridae.’ (Science Press: Beijing, PR China.)

Zheng, Z. M., and Xie, L. D. (2007). A survey of grasshoppers from Mangshan area of Hunan Province in China. Journal of Jishou University, Natural Science Edition 28, 91–95.

Zhou, F., and Huang, Y. (2014). The complete mitochondrial genome of Spathosternum prasiniferum sinense Uvarov, 1931 (Orthoptera: Acridoidea: Acrididae). Mitochondrial DNA 27, 1–2.

Zhou, Z. J., Zhao, L., Liu, N., Guo, H. F., Guan, B., Di, J. X., and Shi, F. M. (2017). Towards a higher-level Ensifera phylogeny inferred from mitogenome sequences. Molecular Phylogenetics and Evolution 108, 22–33.
Towards a higher-level Ensifera phylogeny inferred from mitogenome sequences.Crossref | GoogleScholarGoogle Scholar |