Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Phylogenomic re-evaluation of Triaenonychoidea (Opiliones : Laniatores), and systematics of Triaenonychidae, including new families, genera and species

Shahan Derkarabetian https://orcid.org/0000-0002-9163-9277 A D , Caitlin M. Baker https://orcid.org/0000-0002-9782-4959 A , Marshal Hedin B , Carlos E. Prieto C and Gonzalo Giribet https://orcid.org/0000-0002-5467-8429 A
+ Author Affiliations
- Author Affiliations

A Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.

B Department of Biology, San Diego State University, San Diego, CA 92182, USA.

C Departamento de Zoología y Biología Celular Animal, Universidad del País Vasco–EHU, Leioa, E-48940 Bizkaia, Spain.

D Corresponding author. Email: sderkarabetian@gmail.com

Invertebrate Systematics 35(2) 133-157 https://doi.org/10.1071/IS20047
Submitted: 13 June 2020  Accepted: 18 August 2020   Published: 8 February 2021

Abstract

The Opiliones superfamily Triaenonychoidea currently includes two families, the monogeneric New Zealand–endemic Synthetonychiidae Forster, 1954 and Triaenonychidae Sørensen, 1886, a diverse family distributed mostly throughout the temperate Gondwanan terranes, with ~110 genera and ~500 species and subspecies currently described. Traditionally, Triaenonychidae has been divided into subfamilies diagnosed by very few morphological characters largely derived from the troublesome ‘Roewerian system’ of morphology, and classifications based on this system led to many complications. Recent research within Triaenonychoidea using morphology and traditional multilocus data has shown multiple deeply divergent lineages, non-monophyly of Triaenonychidae, and non-monophyly of subfamilies, necessitating a revision based on phylogenomic data. We used sequence capture of ultraconserved elements across 164 samples to create a 50% taxon occupancy matrix with 704 loci. Using phylogenomic and morphological examinations, we explored family-level relationships within Triaenonychoidea, including describing two new families: (1) Lomanellidae Mendes & Derkarabetian, fam. nov., consisting of Lomanella Pocock, 1903, and a newly described genus Abaddon Derkarabetian & Baker, gen. nov. with one species, A. despoliator Derkarabetian, sp. nov.; and (2) the elevation to family of Buemarinoidae Karaman, 2019, consisting of Buemarinoa Roewer, 1956, Fumontana Shear, 1977, Flavonuncia Lawrence, 1959, and a newly described genus Turonychus Derkarabetian, Prieto & Giribet, gen. nov., with one species, T. fadriquei Derkarabetian, Prieto & Giribet, sp. nov. With our dataset we also explored phylogenomic relationships within Triaenonychidae with an extensive taxon set including samples representing ~80% of the genus-level diversity. Based on our results we (1) discuss systematics of this family including the historical use of subfamilies, (2) reassess morphology in the context of our phylogeny, (3) hypothesise placement for all unsampled genera, (4) highlight lineages most in need of taxonomic revision, and (5) provide an updated species-level checklist. Aside from describing new taxa, our study provides the phylogenomic context necessary for future evolutionary and systematic research across this diverse lineage.

ZooBank Registration: urn:lsid:zoobank.org:pub:81683834-98AB-43AA-B25A-C28C6A404F41

Keywords: classification, Gondwana, Lomanellidae fam. nov., Synthetonychiidae, ultraconserved elements.


References

Aharon, S., Ballesteros, J. A., Crawford, A. R., Friske, K., Gainett, G., Langford, B., Santibáñez-López, C. E., Ya’aran, S., Gavish-Regev, E., and Sharma, P. P. (2019). The anatomy of an unstable node: a Levantine relict precipitates phylogenomic dissolution of higher-level relationships of the armoured harvestmen (Arachnida: Opiliones: Laniatores). Invertebrate Systematics 33, 697–717.
The anatomy of an unstable node: a Levantine relict precipitates phylogenomic dissolution of higher-level relationships of the armoured harvestmen (Arachnida: Opiliones: Laniatores).Crossref | GoogleScholarGoogle Scholar |

Baker, C. M. (2020). Phylogenetics and biogeography of soil invertebrates across Gondwana. Ph.D. thesis, Harvard University.

Baker, C. M., Boyer, S. L., and Giribet, G. (2020a). A well-resolved transcriptomic phylogeny of the mite harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) reveals signatures of Gondwanan vicariance. Journal of Biogeography 47, 1345–1361.
A well-resolved transcriptomic phylogeny of the mite harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) reveals signatures of Gondwanan vicariance.Crossref | GoogleScholarGoogle Scholar |

Baker, C. M., Sheridan, K., Derkarabetian, S., Pérez-González, A., Vélez, S., and Giribet, G. (2020b). Molecular phylogeny and biogeography of the temperate Gondwanan family Triaenonychidae (Opiliones: Laniatores) reveals pre-Gondwanan regionalization, common vicariance, and rare dispersal. Invertebrate Systematics 34, 637–660.
Molecular phylogeny and biogeography of the temperate Gondwanan family Triaenonychidae (Opiliones: Laniatores) reveals pre-Gondwanan regionalization, common vicariance, and rare dispersal.Crossref | GoogleScholarGoogle Scholar |

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., and Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
BEAST 2: a software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar | 24722319PubMed |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 10742046PubMed |

Chifman, J., and Kubatko, L. (2014). Quartet inference from SNP data under the coalescent model. Bioinformatics 30, 3317–3324.
Quartet inference from SNP data under the coalescent model.Crossref | GoogleScholarGoogle Scholar | 25104814PubMed |

De Waele, J., and Spiga, R. (1995). Attuali conoscenze speleologiche nel Supramonte di Baunei. Monographie di Anthèo. Bollettino del Gruppo Speleo-Archeologico Giovanni Spano 4, 4–87.

De Waele, J., Onnis, C., and Robin, Y. (2001). Lovettecannas, dove le dolomie incontrano i graniti Speleologia 45, 16–29.

De Waele, J., Onnis, C., and Robin, Y. (2002). Lovettecannas, un an d’exploration à la cote mille Spelunca 88, 21–38.

Derkarabetian, S., Starrett, J., Tsurusaki, N., Ubick, D., Castillo, S., and Hedin, M. (2018). A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements. ZooKeys 760, 1–36.
A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements.Crossref | GoogleScholarGoogle Scholar |

Derkarabetian, S., Benavides, L. R., and Giribet, G. (2019). Sequence capture phylogenomics of historical ethanol-preserved museum specimens: unlocking the rest of the vault. Molecular Ecology Resources 19, 1531–1544.
Sequence capture phylogenomics of historical ethanol-preserved museum specimens: unlocking the rest of the vault.Crossref | GoogleScholarGoogle Scholar | 31448547PubMed |

Enderlein, G. (1909). Die Spinnen der Crozet-Inseln und von Kerguelen. Deutsche Südpolar-Expedition. X. Zoologie 2, 535–540.

Faircloth, B. C. (2016). PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786–788.
PHYLUCE is a software package for the analysis of conserved genomic loci.Crossref | GoogleScholarGoogle Scholar | 26530724PubMed |

Faircloth, B. C. (2017). Identifying conserved genomic elements and designing universal bait sets to enrich them. Methods in Ecology and Evolution 8, 1103–1112.
Identifying conserved genomic elements and designing universal bait sets to enrich them.Crossref | GoogleScholarGoogle Scholar |

Fernández, R., Sharma, P. P., Tourinho, A. L., and Giribet, G. (2017). The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics. Proceedings of the Royal Society of London – B. Biological Sciences 284, 20162340.
The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics.Crossref | GoogleScholarGoogle Scholar |

Forster, R. R. (1954). The New Zealand harvestmen (sub-order Laniatores). Canterbury Museum Bulletin 2, 1–329.

Forster, R. R. (1955). Further Australian harvestmen (Arachnida: Opiliones). Australian Journal of Zoology 3, 354–411.
Further Australian harvestmen (Arachnida: Opiliones).Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Vogt, L., Pérez González, A., Sharma, P., and Kury, A. B. (2010). A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 26, 408–437.
A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Fernández, R., and Boyer, S. L. (2014). On four poorly known harvestmen from New Zealand (Arachnida, Opiliones: Cyphophthalmi, Eupnoi, Dyspnoi, Laniatores). New Zealand Journal of Zoology 41, 223–233.
On four poorly known harvestmen from New Zealand (Arachnida, Opiliones: Cyphophthalmi, Eupnoi, Dyspnoi, Laniatores).Crossref | GoogleScholarGoogle Scholar |

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q. D., Chen, Z. H., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., and Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29, 644–652.
Full-length transcriptome assembly from RNA-Seq data without a reference genome.Crossref | GoogleScholarGoogle Scholar | 21572440PubMed |

Harvey, M. S. (2002). Short-range endemism among the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
Short-range endemism among the Australian fauna: some examples from non-marine environments.Crossref | GoogleScholarGoogle Scholar |

Hedin, M., Starrett, J., Akhter, S., Schönhofer, A. L., and Shultz, J. W. (2012). Phylogenomic resolution of Paleozoic divergences in harvestmen (Arachnida, Opiliones) via analysis of next-generation transcriptome data. PLoS One 7, e42888.
Phylogenomic resolution of Paleozoic divergences in harvestmen (Arachnida, Opiliones) via analysis of next-generation transcriptome data.Crossref | GoogleScholarGoogle Scholar | 22936998PubMed |

Hickman, V. V. (1939). Opiliones and Araneae. British and New Zealand Antarctic Research Expedition, 1929–1931. Report-Series B (Zoology and Botany) 4, 159–187.

Hickman, V. V. (1958). Some Tasmanian harvestmen of the family Triaenonychidae (sub-order Laniatores). Papers and Proceedings of the Royal Society of Tasmania 92, 1–116.

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., and Vinh, L. S. (2018). UFBoot2: improving the Ultrafast Bootstrap approximation. Molecular Biology and Evolution 35, 518–522.
UFBoot2: improving the Ultrafast Bootstrap approximation.Crossref | GoogleScholarGoogle Scholar | 29077904PubMed |

Hunt, G. S. (1972). A new cavernicolous harvestman from Western Australia (Arachnida: Opiliones: Triaenonychidae). Journal of the Australian Entomological Society 11, 232–236.
A new cavernicolous harvestman from Western Australia (Arachnida: Opiliones: Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Hunt, G. S. (1985). Taxonomy and distribution of Equitius in eastern Australia (Opiliones: Laniatores: Triaenonychidae). Records of the Australian Museum 36, 107–125.
Taxonomy and distribution of Equitius in eastern Australia (Opiliones: Laniatores: Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Hunt, G. S. (1990). Hickmanoxyomma, a new genus of cavernicolous harvestmen from Tasmania (Opiliones: Triaenonychidae). Records of the Australian Museum 42, 45–68.
Hickmanoxyomma, a new genus of cavernicolous harvestmen from Tasmania (Opiliones: Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Hunt, G. S. (1995). Revision of the harvestman genus Miobunus from Tasmania (Arachnida: Opiliones: Triaenonychidae). Records of the Western Australian Museum, , 243–252.

Hunt, G. S. (1996). A preliminary phylogenetic analysis of Australian Triaenonychidae (Arachnida: Opiliones). Revue Suisse de Zoologie hors série I, 295–308.

Hunt, G. S., and Hickman, J. L. (1993). A revision of the genus Lomanella Pocock and its implications for family level classification in the Travunioidea (Arachnida: Opiliones: Triaenonychidae). Records of the Australian Museum 45, 81–119.
A revision of the genus Lomanella Pocock and its implications for family level classification in the Travunioidea (Arachnida: Opiliones: Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Hunt, G. S., and Maury, E. A. (1993). Hypertrophy of male genitalia in South American and Australian Triaenonychidae (Arachnida: Opiliones: Laniatores). Memoirs of the Queensland Museum 33, 551–556.

Jordana, R., Fadrique, F., and Baquero-Martín, E. (2012). The collembolan fauna of Maestrazgo caves (Teruel, Spain) with description of three new species. Zootaxa 3502, 49–71.
The collembolan fauna of Maestrazgo caves (Teruel, Spain) with description of three new species.Crossref | GoogleScholarGoogle Scholar |

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar | 28481363PubMed |

Karaman, I. (2019). A redescription and family placement of Buemarinoa patrizii Roewer, 1956 (Opiliones, Laniatores, Triaenonychidae). Biologia Serbica 41, 67–77.
A redescription and family placement of Buemarinoa patrizii Roewer, 1956 (Opiliones, Laniatores, Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Kauri, H. (1954). Report from Professor T. Gislén’s expedition to Australia in 1951–1952. 9. Harvest-spiders from S.W. Australia. Lunds Universitets Årsskrift, Ny Fjöld Avdelning.

Kauri, H. (1961). Opiliones. In ‘South African Animal Life. Results of the Lund University Expedition in 1950–1951’. (Eds B. Hanström, P. Brinck, and G. Rudebeck.) pp. 9–197. (Almquist & Wiksell: Uppsala, Sweden.)

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Kury, A. B. (2003). Annotated catalogue of the Laniatores of the New World (Arachnida, Opiliones). Revista Ibérica de Aracnología Volumen especial monográfico 1, 1–337.

Kury, A. B. (2004). A new genus of Triaenonychidae from South Africa (Opiliones, Laniatores). Revista Ibérica de Aracnología 9, 205–210.

Kury, A. B. (2006). A new species of Graemontia Lawrence, 1931, from the Western Cape, South Africa, with note on the relationships of the genus (Opiliones: Laniatores: Triaenonychidae). African Zoology 41, 45–50.
A new species of Graemontia Lawrence, 1931, from the Western Cape, South Africa, with note on the relationships of the genus (Opiliones: Laniatores: Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Kury, A. B., and Medrano, M. (2016). Review of terminology for the outline of dorsal scutum in Laniatores (Arachnida, Opiliones). Zootaxa 4097, 130–134.
Review of terminology for the outline of dorsal scutum in Laniatores (Arachnida, Opiliones).Crossref | GoogleScholarGoogle Scholar | 27394531PubMed |

Kury, A. B., and Mendes, A. C. (2007). Taxonomic status of the European genera of Travuniidae (Arachnida, Opiliones, Laniatores). Munis Entomology & Zoology, Ankara 2, 1–14.

Kury, A. B., Mendes, A. C., and Souza, D. R. (2014). World Checklist of Opiliones species (Arachnida). Part 1: Laniatores – Travunioidea and Triaenonychoidea. Biodiversity Data Journal 2, e4094.
World Checklist of Opiliones species (Arachnida). Part 1: Laniatores – Travunioidea and Triaenonychoidea.Crossref | GoogleScholarGoogle Scholar |

Lawrence, R. F. (1931). The harvest-spiders (Opiliones) of South Africa. Annals of the South African Museum 29, 341–508.

Lawrence, R. F. (1934). New South African Opiliones. Annals of the South African Museum 30, 549–586.

Lawrence, R. F. (1937a). A stridulating organ in harvest-spiders. Annals and Magazine of Natural History 20, 364–369.
A stridulating organ in harvest-spiders.Crossref | GoogleScholarGoogle Scholar |

Lawrence, R. F. (1937b). New harvest spiders from Natal and Zululand. Annals of the Natal Museum 8, 127–153.

Lawrence, R. F. (1959). Arachnides Opilions. In ‘Faune de Madagascar 9’. pp. 121. (Institut de Recherche Scientifique, Tananarive–Tsimbazaza: Tananarive, Madagascar.)

Lawrence, R. F. (1963). The Opiliones of the Transvaal. Annals of the Transvaal Museum 24, 275–304.

Machado, G. (2007). Maternal or paternal egg guarding? Revisiting parental care in triaenonychid harvestmen (Opiliones). The Journal of Arachnology 35, 202–204.
Maternal or paternal egg guarding? Revisiting parental care in triaenonychid harvestmen (Opiliones).Crossref | GoogleScholarGoogle Scholar |

Martens, J. (1986). Die Grossgliederung der Opiliones und die Evolution der Ordnung (Arachnida). In ‘Actas del X Congreso Internacional de Arachnología’, Jaca, Spain. Vol. 1, pp. 289–310. (Juvenil: Barcelona, Spain.)

Maury, E. A. (1987a). Triaenonychidae sudamericamos. II. El género Diasia Sörensen 1902 (Opiliones, Laniatores). Physis 45, 74–84.

Maury, E. A. (1987b). Triaenonychidae sudamericanos. IV. El género Triaenonychoides H. Soares 1968 (Opiliones, Laniatores). Boletín de la Sociedad de Biología de Concepción, Chile 58, 95–106.

Maury, E. A. (1988). Triaenonychidae sudamericanos. V. Un nuevo género de opiliones cavernícolas de la Patagonia (Opiliones, Laniatores). Memoires de Biospeologie 15, 117–131.

Mendes, A. C. (2009). Avaliação do status sistemático dos táxons supragenéricos da infra-ordem Insidiatores Loman, 1902 (Arachnida, Opiliones, Laniatores). Ph.D. thesis, Universidade Federal do Rio de Janeiro, Museu Nacional.

Mendes, A. C., and Kury, A. B. (2008). Intercontinental Triaenonychidae – the case of Ceratomontia (Opiliones, Insidiatores). The Journal of Arachnology 36, 273–279.
Intercontinental Triaenonychidae – the case of Ceratomontia (Opiliones, Insidiatores).Crossref | GoogleScholarGoogle Scholar |

Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., and Lanfear, R. (2020a). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 1530–1534.
IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era.Crossref | GoogleScholarGoogle Scholar | 32011700PubMed |

Minh, B. Q., Hahn, M. W., and Lanfear, R. (2020b). New methods to calculate concordance factors for phylogenomic datasets. Molecular Biology and Evolution 37, 2727–2733.
New methods to calculate concordance factors for phylogenomic datasets.Crossref | GoogleScholarGoogle Scholar | 32365179PubMed |

Muñoz Cuevas, A. (1971a). Contribution à la connaissauce de la famille des Triaenonychidae du Chili (Opilions Laniatores). l. Description du nouveau genre Chilenuncia et remarques sur l’écologie et la répartition géographique des espèces chiliennes de la famille. Bulletin du Muséum National d’Histoire Naturelle 42, 872–880.

Muñoz Cuevas, A. (1971b). Redescription de Nuncia americana Roewer et étude de sa morphologie génitale (Opiliones: Laniatores: Triaenonychidae). Senckenbergiana Biologica 52, 97–101.

Muñoz Cuevas, A. (1972). Presencia de la tribu Triaenobunini en Chile. Descripción del nuevo género y de la nueva especie Americobunus ringueleti. (Arachnida, Opiliones, Triaenonychidae). Physis 31, 1–7.

Muñoz-Cuevas, A. (1973). Descripción de Araucanobunus juberthiei gen. et sp. nov. de Triaenobunini del Chile (Arachnida, Opiliones, Triaenonychidae). Physis 32, 173–179.

Murphree, C. S. (1988). Morphology of the dorsal integument of ten opilionid species (Arachnida, Opiliones). The Journal of Arachnology 16, 237–252.

Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar | 25371430PubMed |

Ortuño, V. M., Sendra, A., Reboleira, A. S. P., Fadrique, F., and Faille, A. (2017). The Iberian genus Paraphaenops Jeannel, 1916 (Coleoptera: Carabidae: Trechini): morphology, phylogeny and geographical distribution. Zoologischer Anzeiger 266, 71–88.
The Iberian genus Paraphaenops Jeannel, 1916 (Coleoptera: Carabidae: Trechini): morphology, phylogeny and geographical distribution.Crossref | GoogleScholarGoogle Scholar |

Pérez-González, A., and Werneck, R. M. (2018). A fresh look over the genital morphology of Triaenonychoides (Opiliones: Laniatores: Triaenonychidae) unravelling for the first time the functional morphology of male genitalia. Zoologischer Anzeiger 272, 81–92.
A fresh look over the genital morphology of Triaenonychoides (Opiliones: Laniatores: Triaenonychidae) unravelling for the first time the functional morphology of male genitalia.Crossref | GoogleScholarGoogle Scholar |

Porcel, E., and Gordillo, J. C. (1997). La sima de la Cija: una revisión de la sima más profunda de Teruel. Subterránea 7, 16–19.

Porto, W., and Pérez-González, A. (2019). Redescription of the New Zealand harvestman Nuncia obesa obesa (Opiliones: Laniatores: Triaenonychidae) and implications for the supposed transcontinental distribution of Nuncia. The Journal of Arachnology 47, 370–376.
Redescription of the New Zealand harvestman Nuncia obesa obesa (Opiliones: Laniatores: Triaenonychidae) and implications for the supposed transcontinental distribution of Nuncia.Crossref | GoogleScholarGoogle Scholar |

Porto, W., and Pérez-González, A. (2020). Beauty under the mud: soil crypsis in new species of the Malagasy genus Ankaratrix (Opiliones: Triaenonychidae: Triaenobuninae). Zoologischer Anzeiger 287, 198–216.
Beauty under the mud: soil crypsis in new species of the Malagasy genus Ankaratrix (Opiliones: Triaenonychidae: Triaenobuninae).Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Edwards, D. L., Byrne, M., Harvey, M. S., Joseph, L., and Roberts, J. D. (2015). Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot. Biological Reviews of the Cambridge Philosophical Society 90, 762–793.
Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar | 25125282PubMed |

Roewer, C. F. (1914). Opilioniden von Neu-Caledonien. In ‘Nova Caledonia’. (Eds F. Sarasin, and J. Roux.) pp. 439–443. (Kreidels Verlag: Wiesbaden, Germany.)

Roewer, C. F. (1915). Die Familie der Triaenonychidae der Opiliones–Laniatores. Archiv für Naturgeschichte 80, 61–168.

Roewer, C. F. (1923). ‘Die Weberknechte der Erde. Systematische Bearbeitung der bisher bekannten Opiliones.’ (Verlag von Gustav Fisher: Jena, Germany.)

Roewer, C. F. (1931). Über Triaenonychiden (6. Ergänzung der ‘Weberknechte der Erde’, 1923). Zeitschrift fur Wissenschartliche Zoologie 138, 137–185.

Roewer, C. F. (1942). Einige neue Arachniden I. Veröffentlichungen aus dem Deutschen Kolonial-und Übersee-Museum in Bremen 3, 277–280.

Sato, S., Buckman-Young, R. S., Harvey, M. S., and Giribet, G. (2018). Cryptic speciation in a biodiversity hotspot: multi-locus molecular data reveal new velvet worm species from Western Australia (Onychophora: Peripatopsidae: Kumbadjena). Invertebrate Systematics 32, 1249–1264.
Cryptic speciation in a biodiversity hotspot: multi-locus molecular data reveal new velvet worm species from Western Australia (Onychophora: Peripatopsidae: Kumbadjena).Crossref | GoogleScholarGoogle Scholar |

Schettino, A., and Turco, E. (2006). Plate kinematics of the Western Mediterranean region during the Oligocene and Early Miocene. Geophysical Journal International 166, 1398–1423.
Plate kinematics of the Western Mediterranean region during the Oligocene and Early Miocene.Crossref | GoogleScholarGoogle Scholar |

Schwentner, M., and Giribet, G. (2018). Phylogeography, species delimitation and population structure of a Western Australian short-range endemic mite harvestman (Arachnida: Opiliones: Pettalidae: Karripurcellia). Evolutionary Systematics 2, 81–87.
Phylogeography, species delimitation and population structure of a Western Australian short-range endemic mite harvestman (Arachnida: Opiliones: Pettalidae: Karripurcellia).Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., and Giribet, G. (2011). The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebrate Systematics 25, 106–142.
The evolutionary and biogeographic history of the armoured harvestmen – Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida).Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., Kaluziak, S., Pérez-Porro, A. R., González, V. L., Hormiga, G., Wheeler, W. C., and Giribet, G. (2014). Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Molecular Biology and Evolution 31, 2963–2984.
Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal.Crossref | GoogleScholarGoogle Scholar | 25107551PubMed |

Shear, W. A. (1977). Fumontana deprehendor n. gen., n. sp., the first triaenonychid opilionid from eastern North America (Opiliones: Laniatores: Triaenonychidae). The Journal of Arachnology 3, 177–183.

Shear, W. A., and Derkarabetian, S. (2008). Nomenclatorial changes in Triaenonychidae: Sclerobunus parvus Roewer is a junior synonym of Paranonychus brunneus (Banks), Mutusnonychus Suzuki is a junior synonym of Paranonychus Briggs, and Kaolinonychinae Suzuki is a junior synonym of Paranonychinae Briggs (Opiliones: Triaenonychidae). Zootaxa 1809, 67–68.
Nomenclatorial changes in Triaenonychidae: Sclerobunus parvus Roewer is a junior synonym of Paranonychus brunneus (Banks), Mutusnonychus Suzuki is a junior synonym of Paranonychus Briggs, and Kaolinonychinae Suzuki is a junior synonym of Paranonychinae Briggs (Opiliones: Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Soares, H. E. M. (1968). Contribuiçao estudo dos Opiliões do Chile (Opiliones: Gonyyleptidae, Triaeononychidae). Papeis do Departamento de Zoologia Sao Paulo 21, 259–272.

Staręga, W. (1992). An annotated check-list of Afrotropical harvestmen, excluding the Phalangiidae (Opiliones). Annals of the Natal Museum 33, 271–336.

Starrett, J., Derkarabetian, S., Hedin, M., Bryson, R. W., McCormack, J. E., and Faircloth, B. C. (2017). High phylogenetic utility of an ultraconserved element probe set designed for Arachnida. Molecular Ecology Resources 17, 812–823.
High phylogenetic utility of an ultraconserved element probe set designed for Arachnida.Crossref | GoogleScholarGoogle Scholar | 27768256PubMed |

Swofford, D. L. (2003). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods).’ Version 4. (Sinauer Associates: Sunderland, MA, USA.)

Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar | 17654362PubMed |

Townsend, V. R., Bertram, M. S., and Milne, M. A. (2015). Variation in ovipositor morphology among laniatorean harvestmen (Arachnida: Opiliones). Zoomorphology 134, 487–497.
Variation in ovipositor morphology among laniatorean harvestmen (Arachnida: Opiliones).Crossref | GoogleScholarGoogle Scholar |

Zerbino, D. R., and Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18, 821–829.
Velvet: algorithms for de novo short read assembly using de Bruijn graphs.Crossref | GoogleScholarGoogle Scholar | 18349386PubMed |