Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

A new enigmatic genus of subterranean amphipod (Amphipoda : Bogidielloidea) from Terrell County, Texas, with the establishment of Parabogidiellidae, fam. nov., and notes on the family Bogidiellidae

A. G. Cannizzaro https://orcid.org/0000-0003-1280-1131 A C , J. R. Gibson B and T. R. Sawicki A
+ Author Affiliations
- Author Affiliations

A Department of Biological Sciences, Florida Agricultural and Mechanical University, 1601 S Martin Luther King Jr Boulevard, Tallahassee, FL 32307, USA.

B Aquatic Resources Center, United States Fish and Wildlife Service, 500 East McCarty Lane, San Marcos, TX 78666, USA.

C Corresponding author. Email: cannizag@miamioh.edu

Invertebrate Systematics 34(5) 504-518 https://doi.org/10.1071/IS19061
Submitted: 19 October 2019  Accepted: 20 March 2020   Published: 26 June 2020

Abstract

The superfamily Bogidielloidea is one of the most wide-ranging hypogean amphipod taxa currently known, comprising over 130 species in 43 genera occurring on every continent except Antarctica. This large distribution among such cryptic organisms is curious, especially when combined with weak morphological characters uniting the superfamily. A unique new genus and species of bogidielloid amphipod, Simplexia longicrus, gen. et sp. nov., described from Terrell County, Texas, sheds light on the evolutionary relationships within this grouping. Molecular phylogenetic analyses of the order Amphipoda using two nuclear genes and one mitochondrial gene reveal that this species and the sympatric Parabogidiella americana form a clade removed from other sequenced members of Bogidiellidae sensu stricto, and, as such, the two species are placed in the newly erected Parabogidiellidae, fam. nov. Additional phylogenetic analyses of the cosmopolitan Bogidiellidae are recommended to further resolve its systematics.

Additional keywords: Edwards–Trinity aquifer, Simplexia, Simplexia longicrus, stygobitic.


References

Abràmoff, M. D., Magalhães, P. J., and Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International 11, 36–42.

Barnard, J. L., and Barnard, C. M. (1983). ‘Freshwater Amphipods of the World.’ (Hayfield Associates: Mount Vernon, VA, USA.)

Barnard, J. L., and Karaman, G. S. (1980). Classification of gammarid Amphipoda. Crustaceana 6, 5–16.

Barr, C. B., Gibson, J. R., and Diaz, P. H. (2015). Typhloelmis Barr (Coleoptera: Elmidae: Eliminae), a new stygobiontic riffle beetle with three new species from Texas, USA. Coleopterists Bulletin 69, 531–558.
Typhloelmis Barr (Coleoptera: Elmidae: Eliminae), a new stygobiontic riffle beetle with three new species from Texas, USA.Crossref | GoogleScholarGoogle Scholar |

Bousfield, E. L. (1977). A new look at the systematics of gammaroidean amphipods of the world. Crustaceana 4, 282–316.

Cannizzaro, A. G., Walters, A. D., and Berg, D. J. (2017). A new species of freshwater Gammarus Fabricius, 1775 (Amphipoda: Gammaridae) from a desert spring in Texas, with a key to the species of the genus Gammarus from North America. Journal of Crustacean Biology 37, 709–722.
A new species of freshwater Gammarus Fabricius, 1775 (Amphipoda: Gammaridae) from a desert spring in Texas, with a key to the species of the genus Gammarus from North America.Crossref | GoogleScholarGoogle Scholar |

Cannizzaro, A. G., Balding, D., Lazo-Wasem, E. A., and Sawicki, T. R. (2019). Morphological and molecular analyses reveal a new species of stygobitic amphipod in the genus Crangonyx (Crustacea: Crangonyctidae) from Jackson County, Florida, with a redescription of Crangonyx floridanus and notes on its taxonomy and biogeography. Journal of Natural History 53, 425–473.
Morphological and molecular analyses reveal a new species of stygobitic amphipod in the genus Crangonyx (Crustacea: Crangonyctidae) from Jackson County, Florida, with a redescription of Crangonyx floridanus and notes on its taxonomy and biogeography.Crossref | GoogleScholarGoogle Scholar |

Copilaş-Ciocianu, D., Borko, Š., and Fišer, C. (2020). The late blooming amphipods: global change promoted post-Jurassic ecological radiation despite Palaeozoic origin. Molecular Phylogenetics and Evolution 143, 106664.
The late blooming amphipods: global change promoted post-Jurassic ecological radiation despite Palaeozoic origin.Crossref | GoogleScholarGoogle Scholar | 31669816PubMed |

Dancau, D., and Serban, E. (1965). La presence de Bogidiella albertimagni Hertzog 1933 en Roumaine et quelques remarques sur les especes europeenes du genere. International Journal of Speleology 1, 339–348.
La presence de Bogidiella albertimagni Hertzog 1933 en Roumaine et quelques remarques sur les especes europeenes du genere.Crossref | GoogleScholarGoogle Scholar |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |

Englisch, U., and Koenemann, S. (2001). Preliminary phylogenetic analysis of selected subterranean amphipod crustaceans, using small subunit rDNA gene sequences. Organisms, Diversity & Evolution 1, 139–145.
Preliminary phylogenetic analysis of selected subterranean amphipod crustaceans, using small subunit rDNA gene sequences.Crossref | GoogleScholarGoogle Scholar |

Fišer, C. E., Sket, B., and Trontelj, P. (2008). A phylogenetic perspective on 160 years of troubled taxonomy of Niphargus (Crustacea: Amphipoda). Zoologica Scripta 37, 665–680.
A phylogenetic perspective on 160 years of troubled taxonomy of Niphargus (Crustacea: Amphipoda).Crossref | GoogleScholarGoogle Scholar |

Flot, J. F., Wörheide, G., and Dattagupta, S. (2010). Unsuspected diversity of Niphargus amphipods in the chemoautotrophic cave ecosystem of Frasassi, central Italy. BMC Evolutionary Biology 10, 171.
Unsuspected diversity of Niphargus amphipods in the chemoautotrophic cave ecosystem of Frasassi, central Italy.Crossref | GoogleScholarGoogle Scholar | 20534131PubMed |

Guindon, S., Dufavard, J. F., and Lefort, V. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar | 20525638PubMed |

Hershler, R., Liu, H. P., and Lang, B. K. (2010). Transfer of Cochliopa texana to Prygulopsis (Hydrobiidae) and description of a third congener from the lower Pecos River basin. The Journal of Molluscan Studies 76, 245–256.
Transfer of Cochliopa texana to Prygulopsis (Hydrobiidae) and description of a third congener from the lower Pecos River basin.Crossref | GoogleScholarGoogle Scholar |

Hershler, R., Liu, H. P., and Landve, J. J. (2011). New species and records of springsnails (Caenogastropoda: Cochliopidae: Tryonia) from the Chihuahuan Desert (Mexico and United States), an imperiled biodiversity hotspot. Zootaxa 3001, 1–32.
New species and records of springsnails (Caenogastropoda: Cochliopidae: Tryonia) from the Chihuahuan Desert (Mexico and United States), an imperiled biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Holsinger, J. R. (1966). Subterranean amphipods of the genus Stygonectes (Gammaridae) from Texas. American Midland Naturalist 76, 100–124.
Subterranean amphipods of the genus Stygonectes (Gammaridae) from Texas.Crossref | GoogleScholarGoogle Scholar |

Holsinger, J. R. (1973). Two new species of the subterranean amphipod genus Mexiweckelia (Gammaridae) from Mexico and Texas, with notes on the origin and distribution of the genus. Association for Mexican Cave Studies Bulletin 5, 1–12.

Holsinger, J. R. (1992). Four new species of subterranean amphipod crustaceans (Artesiidae, Hadziidae, Sebidae) from Texas, with comments on their phylogenetic and biogeographic relationships. Texas Memorial Museum Speleological Monographs 3, 1–22.

Holsinger, J. R. (1994). Pattern and process in the biogeography of subterranean amphipods. Hydrobiologia 287, 131–145.
Pattern and process in the biogeography of subterranean amphipods.Crossref | GoogleScholarGoogle Scholar |

Holsinger, J. R., and Longley, G. (1980). The subterranean amphipod crustacean fauna of an artesian well in Texas. Smithsonian Contributions to Zoology 308, 1–62.
The subterranean amphipod crustacean fauna of an artesian well in Texas.Crossref | GoogleScholarGoogle Scholar |

Hou, Z., Fu, J., and Li, S. (2007). A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution 45, 596–611.
A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences.Crossref | GoogleScholarGoogle Scholar | 17686635PubMed |

Hou, Z., Sket, B., and Li, S. (2014). Phylogenetic analyses of Gammaridae crustacean reveal different diversification patterns among sister lineages in the Tethyan region. Cladistics 30, 352–365.
Phylogenetic analyses of Gammaridae crustacean reveal different diversification patterns among sister lineages in the Tethyan region.Crossref | GoogleScholarGoogle Scholar |

Hutchins, B. T. (2018). The conservation status of Texas groundwater invertebrates. Biodiversity and Conservation 27, 475–501.
The conservation status of Texas groundwater invertebrates.Crossref | GoogleScholarGoogle Scholar |

Karaman, G. S. (1981). Contribution to the knowledge of Amphipoda. Revision of Bogidiella-group of genera with description of some new taxa (fam. Gammaridae). Poljoprivreda i Sumarstvo 3, 23–44.

Katoh, K., Kuma, K. I., Toh, H., and Miyata, T. (2005). MAAFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33, 511–518.
MAAFT version 5: improvement in accuracy of multiple sequence alignment.Crossref | GoogleScholarGoogle Scholar | 15661851PubMed |

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitx, S., Duran, C., and Thierer, T. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Kishino, H., and Hasegawa, M. (1989). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular Evolution 29, 170–179.
Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea.Crossref | GoogleScholarGoogle Scholar | 2509717PubMed |

Kishino, H., Miyata, T., and Hasegawa, M. (1990). Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. Journal of Molecular Evolution 31, 151–160.
Maximum likelihood inference of protein phylogeny and the origin of chloroplasts.Crossref | GoogleScholarGoogle Scholar |

Koenemann, S., and Holsinger, J. (1999). Phylogenetic analysis of the amphipod family Bogidiellidae s. lat., and revision of taxa above the species level. Crustaceana 72, 781–816.
Phylogenetic analysis of the amphipod family Bogidiellidae s. lat., and revision of taxa above the species level.Crossref | GoogleScholarGoogle Scholar |

Kornobis, E., Pálsson, S., Sidorov, D. A., Holsinger, J. R., and Kristjánsson, B. K. (2011). Molecular taxonomy and phylogenetic affinities of two groundwater amphipods, Crangonyx islandicus and Crymostygius thingvallensis, endemic to Iceland. Molecular Phylogenetics and Evolution 58, 527–539.
Molecular taxonomy and phylogenetic affinities of two groundwater amphipods, Crangonyx islandicus and Crymostygius thingvallensis, endemic to Iceland.Crossref | GoogleScholarGoogle Scholar | 21195201PubMed |

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.
MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets.Crossref | GoogleScholarGoogle Scholar | 27004904PubMed |

Lanfear, R., Calcott, N., and Ho, S. Y. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 22319168PubMed |

Lanfear, R., Fradsen, P. B., and Wright, A. M. (2016). PartitionFinder 2: new methods for selected partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
PartitionFinder 2: new methods for selected partitioned models of evolution for molecular and morphological phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Leijs, R., Bloechl, A., and Koenemann, S. (2011). Bogidiella veneris, a new species of subterranean Amphipoda (Bogidiellidae) from Australia, with remarks on the systematics and biogeography. Journal of Crustacean Biology 31, 566–575.
Bogidiella veneris, a new species of subterranean Amphipoda (Bogidiellidae) from Australia, with remarks on the systematics and biogeography.Crossref | GoogleScholarGoogle Scholar |

Liu, K., and Warnow, T. J. (2014). Large-scale multiple sequence alignment and tree estimation using SATé. Multiple Sequence Alignment Methods 1079, 219–244.
Large-scale multiple sequence alignment and tree estimation using SATé.Crossref | GoogleScholarGoogle Scholar |

Liu, K., Warnow, T. J., Holder, M. T., Nelesen, S. M., Yu, J., Stamatakis, A. P., and Linder, C. R. (2012). SATé-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Systematic Biology 61, 90.
SATé-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 22139466PubMed |

Lowry, J. K., and Myers, A. A. (2013). A phylogeny and classification of the Senticaudata subord. nov. (Crustacean: Amphipoda). Zootaxa 3610, 1–80.
A phylogeny and classification of the Senticaudata subord. nov. (Crustacean: Amphipoda).Crossref | GoogleScholarGoogle Scholar | 24699701PubMed |

Macdonald, K. S., Yampolsky, L., and Duffy, J. E. (2005). Molecular and morphological evaluation of the amphipod radiation of Lake Baikal. Molecular Phylogenetics and Evolution 35, 323–343.
Molecular and morphological evaluation of the amphipod radiation of Lake Baikal.Crossref | GoogleScholarGoogle Scholar | 15804407PubMed |

Miller, K. B., Gibson, J. R., and Alarie, Y. (2009). North American stygobiontic diving beetles (Coleoptera: Dytiscidae: Hydroporinae) with description of Ereboporus naturaconservatus Miller, Gibson and Alarie, new genus and species, from Texas USA. Coleopterists Bulletin 63, 191–202.
North American stygobiontic diving beetles (Coleoptera: Dytiscidae: Hydroporinae) with description of Ereboporus naturaconservatus Miller, Gibson and Alarie, new genus and species, from Texas USA.Crossref | GoogleScholarGoogle Scholar |

Minh, B. Q., Nguyen, M. A. T., and von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188–1195.
Ultrafast approximation for phylogenetic bootstrap.Crossref | GoogleScholarGoogle Scholar | 23418397PubMed |

Mirarab, S., Nguyen, N., Guo, S., Wang, L. S., Kim, J., and Warnow, T. (2015). PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. Journal of Computational Biology 22, 377–386.
PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences.Crossref | GoogleScholarGoogle Scholar | 25549288PubMed |

Nguyen, L. T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar | 25371430PubMed |

Notenboom, J. (1991). Marine regressions and the evolution of groundwater dwelling amphipods (Crustacea). Journal of Biogeography 18, 437–454.
Marine regressions and the evolution of groundwater dwelling amphipods (Crustacea).Crossref | GoogleScholarGoogle Scholar |

Palumbi, S., Martin, A., Romano, S., and McMillan, W. O. (1991). ‘The Simple Fool’s Guide to PCR, Version 2.0.’ (University of Hawaii: Hawaii.)

Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490.
FastTree 2 – approximately maximum-likelihood trees for large alignments.Crossref | GoogleScholarGoogle Scholar | 20224823PubMed |

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBAYES 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 12912839PubMed |

Ryder, P. D. (1996). ‘Ground Water Atlas of the United States: Segment 4, Oklahoma, Texas.’ (United States Geological Survey: Reston, VA, USA).

Saiki, R., Gelfland, D. H., Stofell, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, B., and Elrich, H. A. (1988). Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.
Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase.Crossref | GoogleScholarGoogle Scholar | 2448875PubMed |

Seidel, R. A., Lang, B. K., and Berg, D. J. (2009). Phylogeographic analysis reveals multiple cryptic species of amphipods (Crustacea: Amphipoda) in Chihuahuan Desert springs. Biological Conservation 142, 2303–2313.
Phylogeographic analysis reveals multiple cryptic species of amphipods (Crustacea: Amphipoda) in Chihuahuan Desert springs.Crossref | GoogleScholarGoogle Scholar |

Shimodaira, H. (2002). An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51, 492–508.
An approximately unbiased test of phylogenetic tree selection.Crossref | GoogleScholarGoogle Scholar | 12079646PubMed |

Shimodaira, H., and Hasegawa, M. (1999). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16, 1114–1116.
Multiple comparisons of log-likelihoods with applications to phylogenetic inference.Crossref | GoogleScholarGoogle Scholar |

Shimodaira, H., and Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics Applications Note 17, 1246–1247.
CONSEL: for assessing the confidence of phylogenetic tree selection.Crossref | GoogleScholarGoogle Scholar |

Sidorov, D. A., Katz, A. D., Taylor, S. J., and Chertoprund, M. V. (2016). A reassessment of the phylogenetic utility of genus-level morphological characters in the family Bogidiellidae (Crustacea, Amphipoda), with description of a new species of Eobogidiella Karaman, 1981. ZooKeys 610, 23.
A reassessment of the phylogenetic utility of genus-level morphological characters in the family Bogidiellidae (Crustacea, Amphipoda), with description of a new species of Eobogidiella Karaman, 1981.Crossref | GoogleScholarGoogle Scholar |

Soubrier, J., Steel, M., Lee, M. S. Y., Der Sarkissian, C., Guindon, S., Ho, S. Y. W., and Cooper, A. (2012). The influence of rate heterogeneity among sites on the time dependence of molecular rates. Molecular Biology and Evolution 29, 3345–3358.
The influence of rate heterogeneity among sites on the time dependence of molecular rates.Crossref | GoogleScholarGoogle Scholar | 22617951PubMed |

Stock, J. H. (1981). The taxonomy and zoogeography of the family of Bogidiellidae (Crustacea, Amphipoda), with emphasis on the West Indian taxa. Bijdragen tot de Dierkunde 51, 345–374.

Strimmer, K., and Rambaut, A. (2002). Inferring confidence sets of possibly misspecified gene trees. Proceedings of the Royal Society of London. Series B, Biological Sciences 269, 137–142.
Inferring confidence sets of possibly misspecified gene trees.Crossref | GoogleScholarGoogle Scholar |

Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar | 17654362PubMed |

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |

Wheeler, T. J., and Kececioglu, J. D. (2007). Multiple alignment by aligning alignments. Bioinformatics 23, i559–i568.
Multiple alignment by aligning alignments.Crossref | GoogleScholarGoogle Scholar | 17646343PubMed |

White, K. N. (2011). Nuclear 18S rDNA as a species-level molecular marker for Leucothoidae (Amphipoda). Journal of Crustacean Biology 31, 710–716.
Nuclear 18S rDNA as a species-level molecular marker for Leucothoidae (Amphipoda).Crossref | GoogleScholarGoogle Scholar |

Xia, X., and Xie, Z. (2001). DAMBE: software package for data analysis in molecular biology and evolution. The Journal of Heredity 92, 371–373.
DAMBE: software package for data analysis in molecular biology and evolution.Crossref | GoogleScholarGoogle Scholar | 11535656PubMed |

Xia, X., Xie, Z., Salemi, M., Chen, L., and Wang, Y. (2003). An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26, 1–7.
An index of substitution saturation and its application.Crossref | GoogleScholarGoogle Scholar | 12470932PubMed |