Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

The unusual case of the widely distributed fiddler crab Minuca rapax (Smith, 1870) from the western Atlantic: an exemplary polytypic species

C. L. Thurman https://orcid.org/0000-0003-1267-841X A , M. J. Hopkins B , A. L. Brase A D and H.-T. Shih C E
+ Author Affiliations
- Author Affiliations

A Department of Biology, University of Northern Iowa, Cedar Falls, IA 50614-0421, USA.

B Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA.

C Department of Life Science and Research Center for Global Change Biology, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan.

D A. L. Brase is now affiliated with Department of Medicine, University of Iowa Medical Center, 375 Newton Road, Iowa City, IA 52242, USA.

E Corresponding author. Email: htshih@dragon.nchu.edu.tw

Invertebrate Systematics 32(6) 1465-1490 https://doi.org/10.1071/IS18029
Submitted: 3 April 2018  Accepted: 3 July 2018   Published: 14 December 2018

Abstract

A classic dilemma in taxonomy is distinguishing intraspecific from interspecific variation. In order to better comprehend the process of divergence and speciation, we examine morphological, genetic, developmental and behavioural variation among related fiddler crab populations from eastern North America, the Caribbean and South America. We chose geographically remote populations that appear related to Minuca rapax (Smith, 1870). First, using females from across the range of the species, we use geometric morphometric techniques to identify regional differences in carapace shape. Second, in the northern portion of the range, the Caribbean into the Gulf of Mexico, we report variation in the relationship between corporal size and cheliped length in males. Third, we examine the major components of the courtship waves produced by males from several locations in the western Gulf of Mexico. Fourth, we compare the structure of the gastric mill between different populations in the Gulf of Mexico, the Caribbean and the Atlantic Ocean. And, fifth, we use mitochondrial 16S rDNA and cytochrome oxidase subunit I as genetic markers to define the phylogeographic relationship among specimens from more than 20 populations. From these studies, we find discrete, distinct populations across the original range of the species. In particular, populations in the northern Gulf of Mexico appear to represent a lineage that has resulted from limited gene flow and sustained selection pressures. On the basis of the observed degree of divergence, it is apparent that some separated populations in M. rapax should be recognised as evolutionary significant units. The geographic range of these populations is consistent with the historical range for Minuca virens (Salmon & Atsaides, 1968), a putative species that otherwise cannot be consistently distinguished from M. rapax based on discrete external morphological characters. This study provides evidence for M. virens as an emergent but possibly not completely isolated subclade of the M. rapax species complex.

Additional keywords: allometry, behavior, gene sequences, geographic range, geometric morphometrics.


References

Adams, D. C., Rohlf, F. J., and Slice, D. E. (2013). A field comes of age: geometric morphometrics in the 21st century. Hystrix 24, 7–14.

Barnwell, F. H., and Thurman, C. L. (1984). Taxonomy and biogeography of the fiddler crabs (Ocypodidae: genus Uca) of the Gulf coasts of eastern North America. Zoological Journal of the Linnean Society 81, 23–87.
Taxonomy and biogeography of the fiddler crabs (Ocypodidae: genus Uca) of the Gulf coasts of eastern North America.Crossref | GoogleScholarGoogle Scholar |

Baums, L. B., Miller, M. W., and Hellberg, M. E. (2006). Geographic variation in clonal structure in a reef-building Caribbean coral, Acropora palmata. Ecological Monographs 76, 503–519.
Geographic variation in clonal structure in a reef-building Caribbean coral, Acropora palmata.Crossref | GoogleScholarGoogle Scholar |

Beinlich, B., and von Hagen, H. O. (2006). Materials for a more stable subdivision of the genus Uca Leach. Zool. Med. Leiden 80, 9–32.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J.R. Stat. Soc. Ser B 57, 289–300.

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K., and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
Cryptic species as a window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |

Bilton, D. T., Paula, J., and Bishop, J. D. D. (2002). Dispersal, genetic differentiation and speciation in estuarine organisms. Estuarine, Coastal and Shelf Science 55, 937–952.
Dispersal, genetic differentiation and speciation in estuarine organisms.Crossref | GoogleScholarGoogle Scholar |

Bookstein, F. L. (1991). ‘Morphometric Tools for Landmark Data: Geometry and Biology.’ (Cambridge University Press: New York.)

Brazeau, D. A., Lesser, M. P., and Slattery, M. (2013). Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within mesophotic reefs. PLoS One 8, e65845.
Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within mesophotic reefs.Crossref | GoogleScholarGoogle Scholar |

Brösing, A., and Türkay, M. (2011). Gastric teeth of some thoracotreme crabs and their contribution to the brachyuran phylogeny. Journal of Morphology 272, 1109–1115.
Gastric teeth of some thoracotreme crabs and their contribution to the brachyuran phylogeny.Crossref | GoogleScholarGoogle Scholar |

Brösing, A., Richter, S., and Schotz, G. (2007). Phylogenetic analysis of the Brachyura (Crustacea, Decapoda) based on characters of the foregut with establishment of a new taxon. Journal of Zoological Systematics and Evolutionary Research 45, 20–32.
Phylogenetic analysis of the Brachyura (Crustacea, Decapoda) based on characters of the foregut with establishment of a new taxon.Crossref | GoogleScholarGoogle Scholar |

Callander, S., Jennisons, M. D., and Blackwell, P. R. Y. (2012). The effect of claw size and wave rate on female choice in a fiddler crab. Journal of Ethology 30, 151–155.
The effect of claw size and wave rate on female choice in a fiddler crab.Crossref | GoogleScholarGoogle Scholar |

Chase, F. A., and Hobbs, H. H. (1969). The freshwater and terrestrial decapod crustaceans of the West Indies with special reference to Dominica. United States National Museum Bulletin 292, 1–258.

Chu, K. H., Schubart, C. D., Shih, H.-T., and Tsang, L. M. (2015). Genetic diversity and evolution of Brachyura. In ‘Treatise on Zoology – Anatomy, Taxonomy, Biology – The Crustacea. 9 (II), Decapoda: Brachyura’. Part 1. (Eds P. Castro, P. J. F. Davie, D. Guinot, F. R. Schram, and J. C. von Vaupel Klein.) pp. 775–820. (Brill: Leiden.)

Clark, H. L., and Blackwell, P. R. Y. (2016). Assortative mating in a fiddler crab. Behaviour 153, 175–185.
Assortative mating in a fiddler crab.Crossref | GoogleScholarGoogle Scholar |

Clement, M. D., Posada, D., and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar |

Collyer, M. L., Sekora, D. J., and Adams, D. C. (2015). A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity 115, 357–365.
A method for analysis of phenotypic change for phenotypes described by high-dimensional data.Crossref | GoogleScholarGoogle Scholar |

Costa, T., and Soares-Gomes, A. (2008). The relative growth of the fiddler crab Uca rapax (Smith) (Crustacea: Decapoda: Ocypodidae) in a tropical lagoon (Itaipu), southeast Brazil. Pan-American Journal of Aquatic Sciences 3, 94–100.

Costa, F. O., deWaard, J. R., Boutillier, J., Ratnasingham, S., Dooh, R. T., Hajibabaei, M., and Hebert, P. D. N. (2007). Biological identifications through DNA barcodes: the case of the Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64, 272–295.
Biological identifications through DNA barcodes: the case of the Crustacea.Crossref | GoogleScholarGoogle Scholar |

Cowen, R. K., Paris, C. B., and Srinivasan, A. (2006). Scaling of connectivity in marine populations. Science 311, 522–527.
Scaling of connectivity in marine populations.Crossref | GoogleScholarGoogle Scholar |

Crane, J. (1943a). Crabs of the genus Uca from Venezuela. Zoologica 27, 33–44.

Crane, J. (1943b). Display breeding and relationships of fiddler crabs (Brachyura, genus Uca) in the northeastern United States. Zoologica 23, 2217–2223.

Crane, J. (1957). Basic patterns of display in fiddler crabs (Ocypodidae, Genus Uca). Zoologica 42, 69–83.

Crane, J. (1975). ‘Fiddler Crabs of the World.’ (Princeton University Press: Princeton, NJ.)

Cunningham, C. W. (1997). Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution 14, 733–740.
Can three incongruence tests predict when data should be combined?Crossref | GoogleScholarGoogle Scholar |

da Silva Castiglioni, D., and Negreiros-Fransozo, M. L. (2006). Physiologic sexual maturity of the fiddler crab Uca rapax (Smith, 1870) (Crustacea, Ocypodidae) from two mangroves in Ubtuba, Brazil. Brazilian Archives of Biology and Technology 49, 239–248.

Davie, P. J. F., Guinot, D., and Ng, P. K. L. (2015). Systematics and classification of Brachyura. In ‘Treatise on Zoology – Anatomy, Taxonomy, Biology – The Crustacea. 9 (II), Decapoda: Brachyura’. Part 1. (Eds P. Castro, P. J. F. Davie, D. Guinot, F. R. Schram, and J. C. von Vaupel Klein.) pp. 1049–1130. (Brill: Leiden.)

de Castiglioni, D. S., and Negreiros-Fransozo, M. L. (2004). Comparative analysis of the relative growth of Uca rapax (Smith) (Crustacea, Ocypodidae) from two mangroves in São Paulo, Brazil. Revista Brasileira de Zoologia 21, 137–144.
Comparative analysis of the relative growth of Uca rapax (Smith) (Crustacea, Ocypodidae) from two mangroves in São Paulo, Brazil.Crossref | GoogleScholarGoogle Scholar |

de Melo, G. A. S. (1996). ‘Manual de Identificação dos Brachyura (Caranguejos e Siris) do Litoral Brasileiro.’ (Plêiade/FAPESP: São Paulo.)

de Oliveira, L. P. H. (1939). Alguns fatores que limitam o habitat de varias especies de caranguelos do gênero Uca Leach. Memórias do Instituto Oswaldo Cruz 34, 519–526.
Alguns fatores que limitam o habitat de varias especies de caranguelos do gênero Uca Leach.Crossref | GoogleScholarGoogle Scholar |

Detto, T., Blackwell, P. R. Y., Hemmi, J. M., and Zeil, J. (2006). Visually mediated species and neighbor recognition in fiddler crabs (Uca mjobergi and Uca capricornis). Proceedings of the Royal Society, Biological Series 273, 1661–1666.

Díaz-Ferguson, E., Haney, R., Wares, J., and Sillman, J. (2010). Population genetics of a trochid gastropod broadens picture of Caribbean Sea connectivity. PLoS One 5, e12675.
Population genetics of a trochid gastropod broadens picture of Caribbean Sea connectivity.Crossref | GoogleScholarGoogle Scholar |

Dryden, D. L., and Mardia, K. V. (2016). ‘Statistical Shape Analysis with Applications in R.’ (Wiley: New York.)

Dufresnes, C., Brelsford, A., Crnobrnja-Isailović, J., Tzankov, N., Lymberakis, P., and Perrin, N. (2015). Timeframe of speciation inferred from secondary contact zones in the European tree frog radiation (Hyla arborea group). BMC Evolutionary Biology 15, 1–8.
Timeframe of speciation inferred from secondary contact zones in the European tree frog radiation (Hyla arborea group).Crossref | GoogleScholarGoogle Scholar |

Faria, S. C., Provete, D. B., Thurman, C. L., and McNamara, J. C. (2017). Phylogenetic patterns and the adaptive evolution of osmoregulation in fiddler crabs. PLoS One 10, 1–19.

Farris, J. S., Källersjö, M., Kluge, A. G., and Bult, C. (1994). Testing significance of incongruence. Cladistics 10, 315–319.
Testing significance of incongruence.Crossref | GoogleScholarGoogle Scholar |

Felder, D. L. (1973). An annotated key to crabs and lobsters (Decapoda, Reptantia) from coastal waters of the northwestern Gulf of Mexico. Publ. No. LSU-SG-73-02. LSU Center for Wetlands Research, Baton Rouge, LA.

Felder, D. L., Alvarez, F., Goy, J. W., and Lemaitre, R. (2009). Decapoda of the Gulf of Mexico, with comments on Amphionidacea. In ‘Gulf of Mexico – Origins, Waters, and Biota’. (Eds D. L. Felder, and D. K. Camp.) pp. 1019–1104 (Chapter 59). (Texas A&M University Press.)

Greenspan, B. N. (1980). Male size and reproductive success in the communal courtship system of the fiddler crab Uca rapax. Animal Behaviour 28, 387–392.
Male size and reproductive success in the communal courtship system of the fiddler crab Uca rapax.Crossref | GoogleScholarGoogle Scholar |

Haber, A. (2016). Phenotypic covariation and morphological diversification in the ruminant skull. American Naturalist 187, 576–591.
Phenotypic covariation and morphological diversification in the ruminant skull.Crossref | GoogleScholarGoogle Scholar |

Hampton, K. R., Hopkins, M. J., McNamara, J. C., and Thurman, C. L. (2014). Intraspecific variation in carapace morphology among fiddler crabs (genus Uca) from the Atlantic coast of Brazil. Aquatic Biology 20, 53–67.
Intraspecific variation in carapace morphology among fiddler crabs (genus Uca) from the Atlantic coast of Brazil.Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003a). Biological identifications through DNA barcodes. Proceedings. Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D., Ratnasingham, S., and deWaard, J. R. (2003b). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings. Biological Sciences 270, S96–S99.
Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species.Crossref | GoogleScholarGoogle Scholar |

Hellberg, M. E. (2009). Gene flow and isolation among populations of marine animals. Annual Review of Ecology, Evolution, and Systematics 40, 291–310.
Gene flow and isolation among populations of marine animals.Crossref | GoogleScholarGoogle Scholar |

Holthuis, L. B. (1959). The Crustacea Decapoda of Suriname. Zoölogische Verhandelingen 44, 1–296.

Hopkins, M. J., and Thurman, C. L. (2010). The geographic structure of morphological variation in eight species of fiddler crabs (Ocypodidae: genus Uca) from the eastern United States and Mexico. Biological Journal of the Linnean Society 100, 248–270.
The geographic structure of morphological variation in eight species of fiddler crabs (Ocypodidae: genus Uca) from the eastern United States and Mexico.Crossref | GoogleScholarGoogle Scholar |

Hopkins, M. J., Haber, A., and Thurman, C. L. (2016). Constraints on geographic variation in fiddler crabs from the western Atlantic. Journal of Evolutionary Biology 29, 1553–1568.
Constraints on geographic variation in fiddler crabs from the western Atlantic.Crossref | GoogleScholarGoogle Scholar |

How, M. J., Hemmi, J. M., Zeil, J., and Peters, R. (2007). Claw waving display changes with receiver distance in fiddler crabs, Uca perplexa. Animal Behaviour 75, 1015–1022.
Claw waving display changes with receiver distance in fiddler crabs, Uca perplexa.Crossref | GoogleScholarGoogle Scholar |

How, M. J., Hemmi, J. M., Zeil, J., and Peters, R. (2009). Variability of a dynamic visual signal: the fiddler crab claw-waving display. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 195, 55–67.
Variability of a dynamic visual signal: the fiddler crab claw-waving display.Crossref | GoogleScholarGoogle Scholar |

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar |

Kingsley, J. S. (1880). Carcinological notes, no. II. Revision of the Gelasimi. Proceedings. Academy of Natural Sciences of Philadelphia II, 135–155.

Klingenberg, C. P., Barluenga, M., and Meyer, A. (2002). Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56, 1909–1920.
Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry.Crossref | GoogleScholarGoogle Scholar |

Knowlton, N. (1993). Sibling species in the sea. Annual Review of Ecology and Systematics 24, 189–216.
Sibling species in the sea.Crossref | GoogleScholarGoogle Scholar |

Knowlton, N. (2000). Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420, 73–90.
Molecular genetic analyses of species boundaries in the sea.Crossref | GoogleScholarGoogle Scholar |

Koch, V., Wolff, M., and Diele, K. (2005). Comparative population dynamics of four fiddler crabs from a north Brazilian mangrove ecosystem. Marine Ecology Progress Series 291, 177–188.
Comparative population dynamics of four fiddler crabs from a north Brazilian mangrove ecosystem.Crossref | GoogleScholarGoogle Scholar |

Laurenzano, C., Mantelatto, F. M., and Schubart, C. D. (2013). South American homogeneity versus Caribbean heterogeneity: population genetic structure of the western Atlantic fiddler crab Uca rapax. Journal of Experimental Marine Biology and Ecology 449, 22–27.
South American homogeneity versus Caribbean heterogeneity: population genetic structure of the western Atlantic fiddler crab Uca rapax.Crossref | GoogleScholarGoogle Scholar |

Laurenzano, C., Costa, T. M., and Schubart, C. D. (2016). Contrasting patterns of clinal genetic diversity and potential colonization pathways in two species of western Atlantic fiddler crabs. PLoS One 11, e0166518.
Contrasting patterns of clinal genetic diversity and potential colonization pathways in two species of western Atlantic fiddler crabs.Crossref | GoogleScholarGoogle Scholar |

Lefébure, T., Douady, C. J., Gouy, M., and Gibert, J. (2006). Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution 40, 435–447.
Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation.Crossref | GoogleScholarGoogle Scholar |

López-Duarte, P. C., Christy, J. H., and Tankersley, R. A. (2011). A behavioral mechanism for dispersal in fiddler crab larvae (genus Uca) varies with habitat, not phylogeny. Limnology and Oceanography 56, 1879–1892.
A behavioral mechanism for dispersal in fiddler crab larvae (genus Uca) varies with habitat, not phylogeny.Crossref | GoogleScholarGoogle Scholar |

Mangum, C. P. (1996). Subunit composition of polymorphic hemocyanins in the decapod crustaceans: differences between sibling species. Physiological Zoology 69, 568–585.
Subunit composition of polymorphic hemocyanins in the decapod crustaceans: differences between sibling species.Crossref | GoogleScholarGoogle Scholar |

Mayr, E. (1963). ‘Animal Species and Evolution.’ (Belnap Press: Cambridge, MA.)

Mayr, E. (1969). ‘Principles of Systematic Zoology.’ (McGraw-Hill Inc.: St Louis.)

Milner, R. N. C., Jennions, M. D., and Blackwell, P. R. Y. (2012). Keeping up appearances: male fiddler crabs wave faster in a crowd. Biological Letters 8, 176–178.
Keeping up appearances: male fiddler crabs wave faster in a crowd.Crossref | GoogleScholarGoogle Scholar |

Mitteroecker, P., and Bookstein, F. (2011). Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evolutionary Biology 38, 100–114.
Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics.Crossref | GoogleScholarGoogle Scholar |

Morard, R., Escarguel, G., Weiner, A. K. M., Andre, A., Douady, C. J., Wade, C. M., Darling, K. F., Ujiie, Y., Seears, H. A., Quillévéré, F., de Garidel-Thoron, T., de Vargas, C., and Kucera, M. (2016). Nomenclature for the nameless: a proposal for an integrative molecular taxonomy of cryptic diversity exemplified by planktonic Foraminifera. Systematic Biology 65, 925–940.
Nomenclature for the nameless: a proposal for an integrative molecular taxonomy of cryptic diversity exemplified by planktonic Foraminifera.Crossref | GoogleScholarGoogle Scholar |

Morgan, S. G. (1996). Influence of tidal variation on reproductive timing. Journal of Experimental Marine Biology and Ecology 206, 237–251.
Influence of tidal variation on reproductive timing.Crossref | GoogleScholarGoogle Scholar |

Naderloo, R., Schubart, C. D., and Shih, H.-T. (2016). Genetic and morphological separation of Uca occidentalis, a new East African fiddler crab, from Uca annulipes (H. Milne-Edward, 1837) (Crustacea: Decapoda: Brachyura: Ocypodidae). Zool Anzeiger 262, 10–19.

Nunes, F., Norris, R. D., and Knowlton, N. (2009). Implications of isolation and low genetic diversity in peripheral populations of an amphi-Atlantic coral. Molecular Ecology 18, 4283–4297.
Implications of isolation and low genetic diversity in peripheral populations of an amphi-Atlantic coral.Crossref | GoogleScholarGoogle Scholar |

Perez, D. M., and Blackwell, P. R. Y. (2017). Female preference for conspecific and heterospecific wave patterns in a fiddler crab. Journal of Experimental Marine Biology and Ecology 486, 155–159.
Female preference for conspecific and heterospecific wave patterns in a fiddler crab.Crossref | GoogleScholarGoogle Scholar |

Perez, D. M., Rosenberg, M. S., and Pie, M. R. (2012). The evolution of waving displays in fiddler crabs. Biological Journal of the Linnean Society. Linnean Society of London 106, 307–315.
The evolution of waving displays in fiddler crabs.Crossref | GoogleScholarGoogle Scholar |

Pfenninger, M., and Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7, 121.
Cryptic animal species are homogeneously distributed among taxa and biogeographical regions.Crossref | GoogleScholarGoogle Scholar |

R Development Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Available at: http://R-project.org/

Rathbun, M. J. (1897). A revision of the nomenclature of the brachyuran. Proceedings of the Biological Society of Washington 11, 153–167.

Rathbun, M. J. (1900). Synopsis of North American invertebrates. XI. The catmetopous or grapsoid crabs of North America. American Naturalist 34, 583–592.
Synopsis of North American invertebrates. XI. The catmetopous or grapsoid crabs of North America.Crossref | GoogleScholarGoogle Scholar |

Rathbun, M. J. (1918). Grapsoid crabs of America. United States National Museum Bulletin 97, 461.

Rocha, L. A., Robertson, D. R., Roman, J., and Bowen, B. W. (2005). Ecological speciation in tropical reef fishes. Proceedings of the Royal Society of London, Series B 272, 573–579.

Rohlf, F. J. (2010). tpsDig2.16. Available at: http://life.bio.sunysb.edu/morph/

Rosenberg, M. S. (2001). The systematics and taxonomy of fiddler crabs: a phylogeny of the genus Uca. Journal of Crustacean Biology 21, 839–869.
The systematics and taxonomy of fiddler crabs: a phylogeny of the genus Uca.Crossref | GoogleScholarGoogle Scholar |

Salmon, M., and Atsaides, S. P. (1968). Behavioral, morphological and ecological evidence for two new species of fiddler crabs from the Gulf coast of the United States. Proceedings of the Biological Society of Washington 81, 275–289.

Salmon, M., and Kettler, M. K. (1987). The importance of behavioral and biochemical differences between fiddler crab taxa, with special reference to Uca rapax (Smith 1870) and U. virens (Salmon and Atsaides 1968). Contributions in Marine Science 30, 63–76.

Shanks, A. L. (2009). Pelagic larval duration and dispersal distance revisited. The Biological Bulletin 216, 373–385.
Pelagic larval duration and dispersal distance revisited.Crossref | GoogleScholarGoogle Scholar |

Shih, H.-T. (2015). Uca (Xeruca), a new genus for the Taiwanese fiddler crab Uca formosensis Rathbun, 1921 (Crustacea: Decapoda: Ocypodidae), based on morphological and molecular evidence. Zootaxa 3974, 151–169.
Uca (Xeruca), a new genus for the Taiwanese fiddler crab Uca formosensis Rathbun, 1921 (Crustacea: Decapoda: Ocypodidae), based on morphological and molecular evidence.Crossref | GoogleScholarGoogle Scholar |

Shih, H.-T., Kamrani, E., Davie, P. J. F., and Liu, M.-Y. (2009). Genetic evidence for the recognition of two fiddler crabs, Uca iranica and U. albimana (Crustacea: Brachyura: Ocypodidae), from the northwestern Indian Ocean, with notes on the U. lactea species-complex. Hydrobiologia 635, 373–382.
Genetic evidence for the recognition of two fiddler crabs, Uca iranica and U. albimana (Crustacea: Brachyura: Ocypodidae), from the northwestern Indian Ocean, with notes on the U. lactea species-complex.Crossref | GoogleScholarGoogle Scholar |

Shih, H.-T., Naruse, T., and Ng, P. K. L. (2010). Uca jocelynae sp. nov., a new species of fiddler crab (Crustacea: Brachyura: Ocypodidae) from the western Pacific. Zootaxa 2337, 47–62.

Shih, H.-T., Ng, P. K. L., Wong, K. J. H., and Chan, B. K. K. (2012). Gelasimus splendidus Stimpson, 1858 (Crustacea: Brachyura: Ocypodidae), a valid species of fiddler crab from the northern South China Sea and Taiwan Strait. Zootaxa 3490, 30–47.

Shih, H.-T., Ng, P.K.L., and Christy, J.H. (2015a). Uca (Petruca), a new subgenus for the rock fiddler crab Uca panamensis (Stimpson, 1859) from Central America, with comments on some species of the American broad-fronted subgenera. Zootaxa 4034, 471–494.
Uca (Petruca), a new subgenus for the rock fiddler crab Uca panamensis (Stimpson, 1859) from Central America, with comments on some species of the American broad-fronted subgenera.Crossref | GoogleScholarGoogle Scholar |

Shih, H.-T., Saher, N. U., Kamrani, E., Ng, P. K. L., Lai, Y.-C., and Liu, M.-Y. (2015b). Population genetics of fiddler crab Uca sindensis from the Arabian Sea. Zoological Studies (Taipei, Taiwan) 54, 1–10.

Shih, H.-T., Ng, P. K. L., Davies, P. J. F., Schubart, C. D., Turkay, M., Naderloo, R., Jones, D., and Liu, M. Y. (2016). Systematics of the family Ocypodidae Rafinesque, 1815 (Crustacea: Brachyura), based on phylogenetic relationships, with reorganization of the subfamily rankings and a review of the taxonomic status of Uca Leech, 1814, sensu lato and its subgenera. Raffles Bulletin of Zoology 64, 139–175.

Shih, H.-T., Chan, B. K. K., and Ng, P. K. L. (2018). Tubuca alcocki, a new pseudocryptic species of fiddler crab from the Indian Ocean, sister to the southeastern African T. urvillei (H. Milne Edwards, 1852) (Crustacea, Decapoda, Brachyura, Ocypodidae). ZooKeys 747, 41–62.
Tubuca alcocki, a new pseudocryptic species of fiddler crab from the Indian Ocean, sister to the southeastern African T. urvillei (H. Milne Edwards, 1852) (Crustacea, Decapoda, Brachyura, Ocypodidae).Crossref | GoogleScholarGoogle Scholar |

Shulman, M. J., and Bermingham, E. (1995). Early life histories, ocean currents, the population genetics of Caribbean reef fishes. Evolution 49, 897–910.
Early life histories, ocean currents, the population genetics of Caribbean reef fishes.Crossref | GoogleScholarGoogle Scholar |

Silberman, J. D., Sarver, S. K., and Walsh, P. J. (1994). Mitochondrial DNA variation and population structure in the spiny lobster Panularus argus. Marine Biology 120, 601–608.
Mitochondrial DNA variation and population structure in the spiny lobster Panularus argus.Crossref | GoogleScholarGoogle Scholar |

Smith, S. I. (1870). III. Notes on American Crustacea. No. 1. Ocypodidea. Transaction of the Connecticut Academy 2, 113–176.
III. Notes on American Crustacea. No. 1. Ocypodidea.Crossref | GoogleScholarGoogle Scholar |

Sokal, R. R., and Rohlf, F. J. (2012). ‘Biometry.’ (W.H. Freeman and Co.: New York.)

Sotka, E. E. (2012). Natural selection, larval dispersal and the geography of phenotype in the sea. Integrative and Comparative Biology 52, 538–545.
Natural selection, larval dispersal and the geography of phenotype in the sea.Crossref | GoogleScholarGoogle Scholar |

Streets, T. H. (1872). Notice of some Crustacea from the island of St. Martin, W.I. collected by Dr. van Rijgersma. Proceedings. Academy of Natural Sciences of Philadelphia 24, 131–134.

Swofford, D. L. (2003). ‘PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.’ (Sinauer Associates: Sunderland, MA.)

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar |

Tankersley, R. A., and Forward, R. B. (1994). Endogenous swimming rhythms in estuarine crab megalopae: implications for flood-tide transport. Marine Biology 118, 415–423.
Endogenous swimming rhythms in estuarine crab megalopae: implications for flood-tide transport.Crossref | GoogleScholarGoogle Scholar |

Tashian, R. E., and Vernberg, F. J. (1958). The specific distinctness of the fiddler crabs Uca pugnax (Smith) and Uca rapax (Smith) at their zone of overlap in northeastern Florida. Zoologica 43, 89–93.

Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., and Vogler, A. P. (2002). DNA points the way ahead in taxonomy. Nature 418, 479.
DNA points the way ahead in taxonomy.Crossref | GoogleScholarGoogle Scholar |

Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., and Vogler, A. P. (2003). A plea for DNA taxonomy. Trends in Ecology & Evolution 18, 70–74.
A plea for DNA taxonomy.Crossref | GoogleScholarGoogle Scholar |

Tavares, M., and de Mendonça, J. B. (2003). The taxonomic status of Uca salsisitus Oliveira, 1939 (Decapoda, Brachyura, Ocypodidae). Crustaceana 76, 187–192.
The taxonomic status of Uca salsisitus Oliveira, 1939 (Decapoda, Brachyura, Ocypodidae).Crossref | GoogleScholarGoogle Scholar |

Taylor, M. S., and Hellberg, M. E. (2003). Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299, 107–109.
Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish.Crossref | GoogleScholarGoogle Scholar |

Taylor, M. S., and Hellberg, M. E. (2006). Comparative phylogeography in a genus of coral reef fishes: biogeographic and genetic concordance in the Caribbean. Molecular Ecology 15, 695–707.
Comparative phylogeography in a genus of coral reef fishes: biogeographic and genetic concordance in the Caribbean.Crossref | GoogleScholarGoogle Scholar |

Thurman, C. L. (1981). Uca marguerita, a new species of fiddler crab (Brachyura: Ocypodidae) from eastern Mexico. Proceedings of the Biological Society of Washington 94, 169–180.

Thurman, C. L. (1982). On the distinctness of the fiddler crab Uca minax and Uca longisignalis in their region of sympatry. Crustaceana 43, 37–50.
On the distinctness of the fiddler crab Uca minax and Uca longisignalis in their region of sympatry.Crossref | GoogleScholarGoogle Scholar |

Thurman, C. L. (1984). Ecological notes on the fiddler crabs of south Texas with special reference to Uca subcylindrica. Journal of Crustacean Biology 4, 665–681.
Ecological notes on the fiddler crabs of south Texas with special reference to Uca subcylindrica.Crossref | GoogleScholarGoogle Scholar |

Thurman, C. L. (1987). Fiddler crabs of eastern Mexico. Crustaceana 53, 94–105.
Fiddler crabs of eastern Mexico.Crossref | GoogleScholarGoogle Scholar |

Thurman, C. L. (1990). Adaptive coloration in Texas fiddler crabs (Uca). In ‘Adaptive Coloration in Invertebrates’. (Ed. M. Wicksten.) pp. 109–125. (Texas A&M College Sea Grant Program: College Station, TX).

Thurman, C. L. (2002). Osmoregulation in six sympatric fiddler crabs (genus Uca) from the northwestern Gulf of Mexico. Marine Ecology (Berlin) 23, 269–284.
Osmoregulation in six sympatric fiddler crabs (genus Uca) from the northwestern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Thurman, C. L. (2003a). Osmoregulation by six species of fiddler crabs (Uca) from the Mississippi delta area in the northern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology 291, 233–253.
Osmoregulation by six species of fiddler crabs (Uca) from the Mississippi delta area in the northern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Thurman, C. L. (2003b). Osmoregulation in fiddler crabs (Uca) from temperate Atlantic and Gulf of Mexico coasts of North America. Marine Biology 142, 77–92.
Osmoregulation in fiddler crabs (Uca) from temperate Atlantic and Gulf of Mexico coasts of North America.Crossref | GoogleScholarGoogle Scholar |

Thurman, C. L. (2004). Unravelling the ecological significance of endogenous rhythms in intertidal crabs. Biological Rhythm Research 35, 43–67.
Unravelling the ecological significance of endogenous rhythms in intertidal crabs.Crossref | GoogleScholarGoogle Scholar |

Thurman, C. L. (2005). A comparison of osmoregulation among subtropical fiddler crabs (Uca) from southern Florida and California. Bulletin of Marine Science 77, 83–100.

Thurman, C. L., Hanna, J., and Bennett, C. (2010). Ecophenotypic physiology: osmoregulation by fiddler crabs (Uca spp.) from the northern Caribbean in relation to ecological distribution. Marine and Freshwater Behaviour and Physiology 43, 339–356.
Ecophenotypic physiology: osmoregulation by fiddler crabs (Uca spp.) from the northern Caribbean in relation to ecological distribution.Crossref | GoogleScholarGoogle Scholar |

Thurman, C. L., Faria, S. C., and McNamara, J. C. (2013). The distribution of fiddler crabs (Uca) along the coast of Brazil: implications for biogeography of the western Atlantic Ocean. Marine Biodiversity Records 6, e1–e12.
The distribution of fiddler crabs (Uca) along the coast of Brazil: implications for biogeography of the western Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Thurman, C. L., Faria, S. C., and McNamara, J. C. (2017). Geographical variation in osmoregulatory ability among populations of ten species of fiddler crabs from the Atlantic coast of Brazil: a macrophysiological analysis. Journal of Experimental Marine Biology and Ecology 497, 243–253.
Geographical variation in osmoregulatory ability among populations of ten species of fiddler crabs from the Atlantic coast of Brazil: a macrophysiological analysis.Crossref | GoogleScholarGoogle Scholar |

Vernberg, F. J. (1959). Studies on the physiological variation between tropical and temperate zone fiddler crabs of the genus Uca. III. The influence of temperature acclimation on oxygen consumption of whole organisms. The Biological Bulletin 117, 582–593.
Studies on the physiological variation between tropical and temperate zone fiddler crabs of the genus Uca. III. The influence of temperature acclimation on oxygen consumption of whole organisms.Crossref | GoogleScholarGoogle Scholar |

Vernberg, W. B., and Vernberg, F. J. (1968). Studies on the physiological variation between tropical and temperate zone fiddler crabs of the genus Uca. VIII. The rate of metabolic adaptation to temperature in tissues of Uca rapax from the Northern Hemispheres. Journal of Experimental Marine Biology and Ecology 2, 113–123.
Studies on the physiological variation between tropical and temperate zone fiddler crabs of the genus Uca. VIII. The rate of metabolic adaptation to temperature in tissues of Uca rapax from the Northern Hemispheres.Crossref | GoogleScholarGoogle Scholar |

von Hagen, H. O. (1976). Review: J. Crane, Fiddler crabs of the world. Crustaceana 31, 221–224.
Review: J. Crane, Fiddler crabs of the world.Crossref | GoogleScholarGoogle Scholar |

von Hagen, H. O. (1980). A key to the x-species of North American fiddler crabs (genus Uca). Zoölogische Mededeelingen 55, 87–96.

von Hagen, H. O. (1982). Visual and acoustic display in Uca mordax and U. burgersi, sibling species of Neotropical fiddler crabs. I. Waving display. Behaviour 82, 229–250.

Zelditch, M. L., Swiderski, D. L., and Sheets, H. D. (2012). ‘Geometric Morphometrics for Biologists.’ 2nd edn. (Academic Press: New York.)