Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

A spectacular new genus of Staphylinini rove beetle from the tropical Andes and its phylogenetic assessment (Coleoptera : Staphylinidae)

Josh Jenkins Shaw A B , Dagmara Żyła A and Alexey Solodovnikov A
+ Author Affiliations
- Author Affiliations

A Biosystematics, Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, Copenhagen 2100, Denmark.

B Corresponding author. Email: josh.shaw@snm.ku.dk

Invertebrate Systematics 31(6) 713-722 https://doi.org/10.1071/IS17020
Submitted: 23 February 2017  Accepted: 19 April 2017   Published: 31 October 2017

Abstract

Devilleferus brunkei Jenkins Shaw & Solodovnikov, gen. et sp. nov., a distinctive new genus and species of Staphylinini rove beetle with an unusual set of morphological characters is described from the tropical Andes (Ecuador and possibly Colombia and Bolivia) in South America. To resolve systematic placement of the new genus within Staphylinini we assembled a dataset of 68 morphological characters scored for 34 taxa representing a broad sample of the respective rove beetle tribe, and performed Bayesian inference and maximum parsimony phylogenetic analyses. Both analytical methods unambiguously placed Devilleferus as sister to the subtribe Amblyopinina, and overall they corroborated recently established subtribal systematics for Staphylinini inferred mainly from molecular markers. Based on the shared synapomorphies, Devilleferus is assigned to the subtribe Amblyopinina. The internal relationships within Amblyopinina remain to be clarified in a broader study of that very poorly explored austral lineage.


References

Ashe, J. S., and Timm, R. M. (1987). Probable mutualistic association between staphylinid beetles (Amblyopinus) and their rodent hosts. Journal of Tropical Ecology 3, 177–181.
Probable mutualistic association between staphylinid beetles (Amblyopinus) and their rodent hosts.Crossref | GoogleScholarGoogle Scholar |

Brunke, A. J., and Solodovnikov, A. (2013). Alesiella gen.n. and a newly discovered relict lineage of Staphylinini (Coleoptera: Staphylinidae). Systematic Entomology 38, 689–707.
Alesiella gen.n. and a newly discovered relict lineage of Staphylinini (Coleoptera: Staphylinidae).Crossref | GoogleScholarGoogle Scholar |

Brunke, A., and Solodovnikov, A. (2014). Male secondary sexual characters resolve taxonomic uncertainty: five new species and a review of the formerly monotypic rove beetle genus Mimosticus Sharp (Coleoptera: Staphylinidae: Staphylininae). Zootaxa 3893, 56–76.
Male secondary sexual characters resolve taxonomic uncertainty: five new species and a review of the formerly monotypic rove beetle genus Mimosticus Sharp (Coleoptera: Staphylinidae: Staphylininae).Crossref | GoogleScholarGoogle Scholar |

Brunke, A. J., Chatzimanolis, S., Schillhammer, H., and Solodovnikov, A. (2016). Early evolution of the hyperdiverse rove beetle tribe Staphylinini (Coleoptera: Staphylinidae: Staphylininae) and a revision of its higher classification. Cladistics 32, 427–451.
Early evolution of the hyperdiverse rove beetle tribe Staphylinini (Coleoptera: Staphylinidae: Staphylininae) and a revision of its higher classification.Crossref | GoogleScholarGoogle Scholar |

Chani-Posse, M., Brunke, A. J., Chatzimanolis, S., Schillhammer, H., and Solodovnikov, A. (2017). Phylogeny of the hyper-diverse rove beetle subtribe Philonthina with implications for classification of the tribe Staphylinini. Cladistics , .
Phylogeny of the hyper-diverse rove beetle subtribe Philonthina with implications for classification of the tribe Staphylinini.Crossref | GoogleScholarGoogle Scholar |

Chatzimanolis, S., Cohen, I. M., Schomann, A. S., and Solodovnikov, A. (2010). Molecular phylogeny of the mega-diverse rove beetle tribe Staphylinini (Insecta, Coleoptera, Staphylinidae). Zoologica Scripta 39, 436–449.
Molecular phylogeny of the mega-diverse rove beetle tribe Staphylinini (Insecta, Coleoptera, Staphylinidae).Crossref | GoogleScholarGoogle Scholar |

Coiffait, H., and Sáiz, F. (1966). Les Quediini du Chile. Annales de la Société Entomologique de France 2, 385–414.

De‐Silva, D. L., Elias, M., Willmott, K., Mallet, J., and Day, J. J. (2016). Diversification of clearwing butterflies with the rise of the Andes. Journal of Biogeography 43, 44–58.
Diversification of clearwing butterflies with the rise of the Andes.Crossref | GoogleScholarGoogle Scholar |

Elias, M., Joron, M., Willmott, K., Silva‐Brandão, K. L., Kaiser, V., Arias, C. F., Piñerez, L. G., Uribe, S., Brower, A. V. Z., Freitas, A. V. L., and Jiggins, C. D. (2009). Out of the Andes: patterns of diversification in clearwing butterflies. Molecular Ecology 18, 1716–1729.
Out of the Andes: patterns of diversification in clearwing butterflies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFOntr0%3D&md5=23aaab86fbbf53ffe25634c510bedadbCAS |

Goloboff, P. A., and Catalano, S. A. (2016). TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238.
TNT version 1.5, including a full implementation of phylogenetic morphometrics.Crossref | GoogleScholarGoogle Scholar |

Kukalová-Peck, J., and Lawrence, J. F. (1993). Evolution of the hind wing in Coleoptera. The Canadian Entomologist 125, 181–258.

Maddison, W. P., and Maddison, D. R. (2015). Mesquite: a Modular System for Evolutionary Analysis. Version 3.04. Available at http://mesquiteproject.org [accessed 3 May 2017].

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE),’ 14 November 2010, New Orleans, LA. pp. 1–8. (IEEE: New Orleans, LA, USA.)

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Olsr4%3D&md5=4ba862a0fc2d787b880f89b938190199CAS |

Nixon, K. C. (2002). ‘WinClada Ver. 1.00. 08.’ (Published by the author: Ithaca, NY.) Available at http://www.cladistics.com/wincDownload.htm [accessed 16 May 2017].

Parker, J. (2016). Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecological News 22, 65–108.

Rambaut, A. (2014). FigTree Ver. 1.3.1. Available at http:// tree.bio.ed.ac.uk/software/figtree/ [verified 3 May 2017].

Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J. (2014). Tracer ver. 1.6. Available at http://tree.bio.ed.ac.uk/software/tracer/ [verified 3 May 2017].

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Sáiz, F. (1971). Sur les Quediini du Chili (Col. Staphylinidae). Bulletin de la Société d’Histoire Naturelle de Toulouse 106, 364–392.

Seevers, C. H. (1944). A new subfamily of beetles parasitic on mammals, Staphylinidae, Amblyopininae. Field Museum of Natural History 28, 155–172.

Seevers, C. H. (1955). A revision of the tribe Amblyopinini. Staphylinid beetles parasitic on mammals. Fieldiana. Zoology 37, 211–264.

Shorthouse, D. P. (2010). SimpleMappr, an online tool to produce publication-quality point maps. Available at http://www.simplemappr.net [accessed 22 December 2016].

Solodovnikov, A. (2006). Revision and phylogenetic assessment of Afroquedius gen. nov. from South Africa: toward new concepts of the genus Quedius, subtribe Quediina and reclassification of the tribe Staphylinini (Coleoptera: Staphylinidae: Staphylininae). Annals of the Entomological Society of America 99, 1064–1084.
Revision and phylogenetic assessment of Afroquedius gen. nov. from South Africa: toward new concepts of the genus Quedius, subtribe Quediina and reclassification of the tribe Staphylinini (Coleoptera: Staphylinidae: Staphylininae).Crossref | GoogleScholarGoogle Scholar |

Solodovnikov, A. (2012). Rove beetle subtribes Quediina, Amblyopinina and Tanygnathinina: systematic changes affecting Central European fauna (Coleoptera, Staphylinidae, Staphylinini). ZooKeys 162, 25–42.
Rove beetle subtribes Quediina, Amblyopinina and Tanygnathinina: systematic changes affecting Central European fauna (Coleoptera, Staphylinidae, Staphylinini).Crossref | GoogleScholarGoogle Scholar |

Solodovnikov, A., and Jenkins Shaw, J. (2016). The remarkable Australian rove beetle genus Myotyphlus: its cryptic diversity and significance for exploring mutualism among insects and mammals (Coleoptera: Staphylinidae). Austral Entomology , .
The remarkable Australian rove beetle genus Myotyphlus: its cryptic diversity and significance for exploring mutualism among insects and mammals (Coleoptera: Staphylinidae).Crossref | GoogleScholarGoogle Scholar |

Solodovnikov, A., and Schomann, A. (2009). Revised systematics and biogeography of ‘Quediina’ of sub-Saharan Africa: new phylogenetic insights into the rove beetle tribe Staphylinini (Coleoptera: Staphylinidae). Systematic Entomology 34, 443–466.
Revised systematics and biogeography of ‘Quediina’ of sub-Saharan Africa: new phylogenetic insights into the rove beetle tribe Staphylinini (Coleoptera: Staphylinidae).Crossref | GoogleScholarGoogle Scholar |