Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

A multi-gene phylogeny of Australian Monomorium Mayr (Hymenoptera : Formicidae) results in reinterpretation of the genus and resurrection of Chelaner Emery

Kathryn S. Sparks A D , Alan N. Andersen B and Andrew D. Austin C
+ Author Affiliations
- Author Affiliations

A Department of Agriculture and Water Resources, PO Box 63, Export Park, SA 5950, Australia.

B Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia.

C Australian Centre for Evolutionary Biology and Biodiversity, and Department of Ecology and Evolutionary Biology, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

D Corresponding author. Email: Kate.Sparks@agriculture.gov.au

Invertebrate Systematics 33(1) 225-236 https://doi.org/10.1071/IS16080
Submitted: 25 November 2016  Accepted: 28 September 2018   Published: 6 February 2019

Abstract

Monomorium Mayr is a speciose, cosmopolitan genus of myrmicine ants that has had a challenging systematic history, comprising numerous lineages whose relationships are problematic. This study employed an extensive sampling of mostly Australian taxa, along with exemplars of other genera of Solenopsidini, to examine relationships among the continent’s Monomorium fauna. Sequences from elongation factor 1α F2, wingless and cytochrome oxidase subunit 1 (COI) were analysed using Bayesian and maximum likelihood methods. The resultant phylogeny resolved Australian Monomorium into two major clades separated by exemplars from other genera; one comprised predominantly species with 11-segmented antennae (corresponding to Monomorium s. str. in a recent study of Myrmicinae) along with three Paleotropical species. The second clade included Australian species with 12-segmented antennae, two New Zealand species and two from New Caledonia. Two Australian cryptobiotic species were resolved as sister to Clade 2. COI analysis indicated that some species (M. fieldi Forel, M. leave Mayr and M. leae Forel) possibly represent cryptic species complexes. The New Zealand M. antipodum Forel was recovered as a valid species, and is closely related to an eastern Australian population. We resurrect the genus Chelaner Emery for species in the second clade (with 12-segmented antennae) and outline morphological characters to separate Chelaner from Monomorium s. str. Fifty-three species of Chelaner are treated as either stat. nov. or stat. rev.

Additional keywords: species, paraphyly, Australasia, Mymicinae, New Zealand, COI.


References

Abouheif, E., and Wray, G. A. (2002). Evolution of the gene network underlying wing polyphenism in ants. Science 297, 249–252.
Evolution of the gene network underlying wing polyphenism in ants.Crossref | GoogleScholarGoogle Scholar | 12114626PubMed |

Andersen, A. N. (2007). Ant diversity in arid Australia: a systematic overview. In ‘Advances in Ant Systematics (Hymenoptera: Formicidae): Homage to E.O. Wilson – 50 Years of Contributions’. (Eds R. R. Snelling, B. L. Fisher and P. S. Ward.) Memoirs of the American Entomological Institute 80, 19–51.

Andersen, A. N., Arnan, X., and Sparks, K. (2013). Limited niche differentiation within remarkable co-occurrences of congeneric species: Monomorium ants in the Australian seasonal tropics. Austral Ecology 38, 557–567.
Limited niche differentiation within remarkable co-occurrences of congeneric species: Monomorium ants in the Australian seasonal tropics.Crossref | GoogleScholarGoogle Scholar |

Blaimer, B. B., Brady, S. G., Ted, R., Schultz, T. R., Lloyd, M. W., Fisher, B. L., and Ward, P. S. (2015). Phylogenomic methods outperform traditional multi-locus approaches in resolving deep evolutionary history: a case study of formicine ants. BMC Evolutionary Biology 15, 271.
Phylogenomic methods outperform traditional multi-locus approaches in resolving deep evolutionary history: a case study of formicine ants.Crossref | GoogleScholarGoogle Scholar | 26637372PubMed |

Bolton, B. (1987). A review of the Solenopsis genus-group and revision of Afrotropical Monomorium Mayr (Hymenoptera: Formicidae). Bulletin of the British Museum (Natural History). Entomology 54, 263–452.

Brady, S. G., Schultz, T. R., Fisher, B. L., and Ward, P. S. (2006). Evaluating alternative hypotheses for the early evolution and diversification of ants. Proceedings of the National Academy of Sciences of the United States of America 103, 18172–18177.
Evaluating alternative hypotheses for the early evolution and diversification of ants.Crossref | GoogleScholarGoogle Scholar | 17079492PubMed |

Brown, W. L. (1958). A review of the ants of New Zealand. Acta Hymenopterologica 1, 1–50.

Buczkowski, G., and Bennett, G. (2009). Colony budding and its effects on food allocation in the highly polygynous ant, Monomorium pharaonis. Ethology 115, 1091–1099.
Colony budding and its effects on food allocation in the highly polygynous ant, Monomorium pharaonis.Crossref | GoogleScholarGoogle Scholar |

Clark, J. (1934). Ants from the Otway Ranges. Memoirs of the National Museum of Victoria 8, 48–73.
Ants from the Otway Ranges.Crossref | GoogleScholarGoogle Scholar |

Dinsdale, L., Cook, C., Buckley, Y. M., and De Barro, P. (2010). Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Annals of the Entomological Society of America 103, 196–208.
Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries.Crossref | GoogleScholarGoogle Scholar |

Don, W. (2007). ‘Ants of New Zealand.’ (Otago University Press: Dunedin, New Zealand.)

Don, A. W., and Jones, T. H. (1993). The stereochemistry of 3-butyl-5-(5-hexenyl)-pyrrolizidine from populations of Monomorium antarcticum (Smith) (Hymenoptera: Formicidae) and its possible role as a unique taxonomic character. New Zealand Entomologist 16, 45–48.
The stereochemistry of 3-butyl-5-(5-hexenyl)-pyrrolizidine from populations of Monomorium antarcticum (Smith) (Hymenoptera: Formicidae) and its possible role as a unique taxonomic character.Crossref | GoogleScholarGoogle Scholar |

Don, A. W., Jones, T. H., Flournoy, R. C., and Zottig, V. E. (2001). Venom chemistry of Monomorium antipodum Forel (Hymenoptera: Formicidae) from New Zealand and its relevance to the taxonomy of the species. New Zealand Entomologist 24, 49–52.
Venom chemistry of Monomorium antipodum Forel (Hymenoptera: Formicidae) from New Zealand and its relevance to the taxonomy of the species.Crossref | GoogleScholarGoogle Scholar |

Emery, C. (1914). Les Fourmis de la Nouvelle-Caledonie er des Iles Loyalty. In ‘Forschungen in Neu-Caledonien und auf den Loyalty-Inseln’. Zoologie 1, 393–437.

Eguchi, K., Tuan, V. B., General, D. M., and Alpert, G. D. (2010). Revision of the ant genus Anillomyrma Emery, 1913 (Hymenoptera: Formicidae: Myrmicinae: Solenopsidini). Myrmecological News 13, 31–36.

Emery, C. (1901). Ameisen gesammelt in Ceylon von Dr. W. Horn 1899. Deutsche Entomologische Zeitschrift 1901, 113–122.

Emery, C. (1915). Noms de sous-genres et de genres proposés pour la sous-famille des Myrmicinae. Modifications à la classification de ce groupe (Hymenoptera Formicidae). Bulletin de la Société Entomologique de France 1915, 189–192.

Emery, C. (1921). Hymenoptera. Fam. Formicidae. Subfam. Myrmicinae. Genera Insectorum 174A, 1–94.

Ettershank, G. (1966). A generic revision of the world Myrmicinae related to Solenopsis and Pheidologeton (Hymenoptera: Formicidae). Australian Journal of Zoology 14, 73–171.
A generic revision of the world Myrmicinae related to Solenopsis and Pheidologeton (Hymenoptera: Formicidae).Crossref | GoogleScholarGoogle Scholar |

Fisher, B. L., and Bolton, B. (2016). ‘Ants of Africa and Madagascar. A Guide to the Genera.’ (University of California Press: Berkley, IA.)

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |

Forel, A. (1892). Die Ameisen Neu-Seelands. Mitteilungen der Schweizerische Entomologische Gesellschaft 8, 331–343.

Forel, A. (1901). Variétés myrmécologiques. Annales de la Société Entomologique de Belgique 45, 334–382.

Forel, A. (1902). Fourmis nouvelles d’Australie. Revue Suisse de Zoologie 10, 405–548.
Fourmis nouvelles d’Australie.Crossref | GoogleScholarGoogle Scholar |

Forel, A. (1907). Formicidae. In ‘Die Fauna Südwest-Australien. Volume 7’. (Eds W. Michaelsen and R. Hartmeyer.) pp. 263–310. (Gustav Fischer: Jena, Germany.)

Forel, A. (1910a). Note sur quelque fourmis d’Afrique. Annales de la Société Entomologique de Belgique 54, 421–458.

Forel, A. (1910b). Formicides Australiens reçus de M. M. Froggatt et Rowland Turner. Revue Suisse de Zoologie 18, 1–94.

Forel, A. (1913). Fourmis de Tasmanie et d’Australie récoltées par MM. Lae, Froggatt etc. Bulletin de la Société Vaudoise des Sciences Naturelles 49, 173–195.

Forel, A. (1915). Results of Dr E. Mjöbergs Swedish Scientific Expeditions to Australia 1910–13. 2. Ameisen. Arkiv för Zoologi 9, 1–119.

Gunawardana, D. (2005). Monomorium fieldi Forel (Hymenoptera: Formicidae) is the current name to use for ants previously known as Monomorium antipodum Forel and Monomorium orientale Mayr in New Zealand. The Weta 30, 14–15.

Hall, T. A. (1990). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.

Heterick, B. E. (2001). Revision of the Australian ants of the genus Monomorium (Hymenoptera: Formicidae). Invertebrate Taxonomy 15, 353–459.
Revision of the Australian ants of the genus Monomorium (Hymenoptera: Formicidae).Crossref | GoogleScholarGoogle Scholar |

Heterick, B. E. (2003). Two new Australian Monomorium Mayr (Hymenoptera: Formicidae), including a highly distinctive species. Australian Journal of Entomology 42, 249–253.
Two new Australian Monomorium Mayr (Hymenoptera: Formicidae), including a highly distinctive species.Crossref | GoogleScholarGoogle Scholar |

Heterick, B. (2006). A revision of the Malagasy ants belonging to genus Monomorium Mayr, 1855 (Hymenoptera: Formicidae). Proceedings of the California Academy of Sciences 57, 69–202.

Jerdon, T. C. (1851). A catalogue of the species of ants found in southern India. The Madras Journal of Literature and Science 17, 103–127.

Jones, T. H., Blum, M. S., Andersen, A. N., Fales, H. M., and Escoubas, P. (1988). Novel 2-ethyl-5-alkylpyrrolidines in the venom of an Australian ant of the genus Monomorium. Journal of Chemical Ecology 14, 35–45.
Novel 2-ethyl-5-alkylpyrrolidines in the venom of an Australian ant of the genus Monomorium.Crossref | GoogleScholarGoogle Scholar | 24276992PubMed |

Kawahara, A. Y., and Breinholt, J. W. (2014). Phylogenomics provides strong evidence for relationships of butterflies and moths. Proceedings. Biological Sciences 281, 20140970.
Phylogenomics provides strong evidence for relationships of butterflies and moths.Crossref | GoogleScholarGoogle Scholar | 24966318PubMed |

Kugler, C. (1978). A comparative study of the myrmicine sting apparatus (Hymenoptera, Formicidae). Studia Entomologica 20, 413–548.

Kumar, S., Nei, M., Dudley, J., and Tamura, K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9, 299–306.
MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences.Crossref | GoogleScholarGoogle Scholar | 18417537PubMed |

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 22319168PubMed |

Mayr, G. (1855). Formicina Austriaca. Beschreibung der bisher im österreichischen Kaiserstaate aufgefundenen Ameisen, nebst Hinzufügung jener in Deutschland, in der Schweiz und in Italien vorkommenden Arten. Verhandlungen des Zoologisch-Botanischen Gesellschaft Wien 5, 273–478.

Mayr, G. (1865). ‘Reise der Österreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1850.’ (Zoologischer Theil: Vienna, Austria.)

Mayr, E. (1872). Formicidae Borneenses collectae a G. Doria er O. Deccari in Territorio Sarawak annis 1865–1867. Annali del Museo Civico di Storia Naturale di Genova 2, 133–155.

Mayr, G. (1876). Die Australischen Formiciden. Journal des Museum Godeffroy 12, 56–115.

Mayr, G. (1887). Südamerikanische Formiciden. Verhandlungen der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft in Wien 37, 511–632.

McAreavey, J. (1949). Australian Formicidae. New genera and species. Proceedings of the Linnean Society of New South Wales 74, 1–25.

Moreau, C. S., Bell, C. D., Vila, R., Archibald, S. B., and Pierce, N. E. (2006). Phylogeny of the ants: diversification in the age of angiosperms. Science 312, 101–104.
Phylogeny of the ants: diversification in the age of angiosperms.Crossref | GoogleScholarGoogle Scholar | 16601190PubMed |

Ng’endo, R., Osiemo, Z. B., and Brandl, R. (2013). DNA barcodes for species identification in the hyperdiverse ant genus Pheidole (Formicidae: Myrmicinae). Journal of Insect Science 13, 27.
| 23902257PubMed |

Peters, R. S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., Kozlov, A., Podsiadlowski, L., Petersen, M., Lanfear, R., Diez, P. A., Heraty, J., Kjer, K. M., Klopfstein, S., Meier, R., Polidori, C., Schmitt, T., Liu, S., Zhou, X., Wappler, T., Rust, J., Misof, B., and Niehuis, O. (2017). Evolutionary history of the Hymenoptera. Current Biology 27, 1013–1018.
Evolutionary history of the Hymenoptera.Crossref | GoogleScholarGoogle Scholar | 28343967PubMed |

Rix, M. G., Cooper, S. J. B., Meusemann, K., Klopfsteim, S., Harrison, S. E., Harvey, M. S., and Austin, A. D. (2017). Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae). Molecular Phylogenetics and Evolution 109, 302–320.
Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae).Crossref | GoogleScholarGoogle Scholar | 28126515PubMed |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Santschi, F. (1915). Nouvelles formis d’Afrique. Annales de la Société Entomologique de France 84, 224–282.

Saunders, W. W. (1842). Descriptions of two hymenopterous insects. The Transactions of the Entomological Society of London 3, 223–231.

Santschi, F. (1926). Deux nouvelles fourmis parasites de l’Argentine. Folia Myrmecologica et Termitologica 1, 6–8.

Shattuck, S. O. (2009). Austromorium, a new myrmicine ant genus from Australia (Hymenoptera: Formicidae). Zootaxa 2193, 62–68.

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Annals of the Entomological Society of America 87, 651–701.
Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers.Crossref | GoogleScholarGoogle Scholar |

Smith, F. (1858). ‘Catalogue of Hymenopterous Insects in the Collection of the British Museum. Part VI. Formicidae.’ (British Museum: London, United Kingdom.)

Solis, D. R., and Bueno, O. C. (2014). Thermal tolerances of three tramp ant species (Hymenoptera: Formicidae). Sociobiology 59, 213–223.
Thermal tolerances of three tramp ant species (Hymenoptera: Formicidae).Crossref | GoogleScholarGoogle Scholar |

Song, C., Wang, Q., Zhang, R. L., Sun, B. J., and Wang, X. H. (2016). Exploring the utility of DNA barcoding in species delimitation of Ploypedilum (Tripodura) non-biting midges (Diptera: Chironomidae). Zootaxa 4079, 534–550.
Exploring the utility of DNA barcoding in species delimitation of Ploypedilum (Tripodura) non-biting midges (Diptera: Chironomidae).Crossref | GoogleScholarGoogle Scholar | 27394207PubMed |

Sparks, K. S., Andersen, A. N., and Austin, A. D. (2014a). Systematics of the Monomorium rothsteini Forel species complex (Hymenoptera: Formicidae), a problematic ant group in Australia. Zootaxa 3893, 489–529.
Systematics of the Monomorium rothsteini Forel species complex (Hymenoptera: Formicidae), a problematic ant group in Australia.Crossref | GoogleScholarGoogle Scholar | 25544535PubMed |

Sparks, K. S., Andersen, A. N., Donnellan, S. C., and Austin, A. D. (2014b). Navigating the mtDNA road map out of the morphological maze: interpreting morphological variation in the diverse Monomorium rothsteini (Forel) complex (Hymenoptera: Formicidae). Systematic Entomology 39, 264–278.
Navigating the mtDNA road map out of the morphological maze: interpreting morphological variation in the diverse Monomorium rothsteini (Forel) complex (Hymenoptera: Formicidae).Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Tay, J. W., Neoh, K. B., and Lee, C. Y. (2014). The roles of the queen, brood and worker castes in the colony growth dynamics of the pharaoh ant Monomorium pharaonis (Hymenoptera: Formicidae). Myrmecological News 20, 87–94.

Ward, P. S., and Downie, D. A. (2005). The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): phylogeny and evolution of big-eyed arboreal ants. Systematic Entomology 30, 310–335.
The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): phylogeny and evolution of big-eyed arboreal ants.Crossref | GoogleScholarGoogle Scholar |

Ward, P. S., Brady, S. G., Fisher, B. L., and Schultz, T. R. (2015). The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Systematic Entomology 40, 61–81.
The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae).Crossref | GoogleScholarGoogle Scholar |

Wheeler, W. M. (1917). The phylogenetic development of subapterous and apterous castes in the Formicidae. Proceedings of the National Academy of Sciences of the United States of America 3, 109–117.
The phylogenetic development of subapterous and apterous castes in the Formicidae.Crossref | GoogleScholarGoogle Scholar | 16586692PubMed |

Wheeler, W. M. (1934). Contributions to the fauna of Rottnest Island, Western Australia. No. IX. The ants. Journal of the Royal Society of Western Australia 20, 137–163.