Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
REVIEW

The first troglobitic species of Gymnobisiidae (Pseudoscorpiones : Neobisioidea), from Table Mountain (Western Cape Province, South Africa) and its phylogenetic position

Mark S. Harvey A B C D E G , Joel A. Huey A B , Mia J. Hillyer A , Erin McIntyre F and Gonzalo Giribet F D
+ Author Affiliations
- Author Affiliations

A Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia.

B School of Animal Biology, University of Western Australia, Crawley, WA 6009, Australia.

C School of Natural Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.

D Research Associate, Division of Invertebrate Zoology, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024-5192, USA.

E Department of Entomology, California Academy of Sciences, Golden Gate Park, San Francisco, CA 94103-3009, USA.

F Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

G Corresponding author. Email: mark.harvey@museum.wa.gov.au

Invertebrate Systematics 30(1) 75-85 https://doi.org/10.1071/IS15044
Submitted: 6 October 2015  Accepted: 12 December 2016   Published: 16 March 2016

Abstract

Fully troglobitic pseudoscorpions are rare in the Afrotropical Region, and we explored the identity and phylogenetic relationships of specimens of a highly modified troglobite of the family Gymnobisiidae in the dark zone of the Wynberg Cave system, on Table Mountain, South Africa. This large pseudoscorpion – described as Gymnobisium inukshuk Harvey & Giribet, sp. nov. – lacks eyes and has extremely long appendages, and has been found together with other troglobitic fauna endemic only to this cave system. Phylogenetic analyses using the nuclear ribosomal genes 18S rRNA and 28S rRNA and the mitochondrial protein-encoding gene cytochrome c oxidase subunit I unambiguously place the new species with other surface Gymnobisium from South Africa. This placement receives strong support and is stable to analytical treatments, including static and dynamic homology, parsimony and maximum likelihood, and data removal for ambiguously aligned sites. This species is the first troglobitic species of the family and one of the most highly modified pseudoscorpions from the Afrotropical Region.

http://zoobank.org/urn:lsid:zoobank.org:pub:5227092B-A64B-4DB3-AD90-F474F0BA6AED

Additional keywords: 18S rRNA, 28S rRNA, COI, Gymnobisium, morphology, new species, Table Mountain.


References

Arabi, J., Judson, M. L., Deharveng, L., Lourenco, W. R., Cruaud, C., and Hassanin, A. (2012). Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements. Journal of Molecular Evolution 74, 81–95.
Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xktlaktr0%3D&md5=c35cf3c7b9cfae91dcb2e7d48bb4b2a9CAS | 22362465PubMed |

Beier, M. (1931). Neue Pseudoscorpione der U. O. Neobisiinea. Mitteilungen aus dem Zoologischen Museum in Berlin 17, 299–318.

Beier, M. (1932). Pseudoscorpionidea I. Subord. Chthoniinea et Neobisiinea. Das Tierreich 57, i–xx, 1–258.

Beier, M. (1935). Arachnida I. Pseudoscorpionidea. In ‘Mission Scientifique de l’Omo. Vol. 2’. pp. 117–129. (Muséum National d’Histoire Naturelle: Paris.)

Beier, M. (1947). Zur Kenntnis der Pseudoscorpionidenfauna des südlichen Afrika, insbesondere der südwest- und südafrikanischen Trockengebiete. Eos, Madrid 23, 285–339.

Beier, M. (1955). Pseudoscorpionidea. In ‘South African Animal Life. Results of the Lund Expedition in 1950–1951. Vol. 1’. (Eds B. Hanstrom, P. Brinck and G. Rudebeck.) pp. 263–328. (Almquist and Wiksell: Stockholm.)

Beier, M. (1958). The Pseudoscorpionidea (false-scorpions) of Natal and Zululand. Annals of the Natal Museum 14, 155–187.

Beier, M. (1964a). Die Pseudoscorpioniden-Fauna Chiles. Annalen des Naturhistorischen Museums in Wien 67, 307–375.

Beier, M. (1964b). Weiteres zur Kenntnis der Pseudoscorpioniden-Fauna des südlichen Afrika. Annals of the Natal Museum 16, 30–90.

Beier, M. (1964c). The zoological results of Gy. Topál’s collectings in South Argentina. 15. Pseudoscorpionidea. Annales Historico-Naturales Musei Nationalis Hungarici 56, 487–500.

Beier, M. (1966). Ergänzungen zur Pseudoscorpioniden-Fauna des südlichen Afrika. Annals of the Natal Museum 18, 455–470.

Bond, J. E., Garrison, N. L., Hamilton, C. A., Godwin, R. L., Hedin, M., and Agnarsson, I. (2014). Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Current Biology 24, 1765–1771.
Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyjt7fM&md5=fe88554fa6503139897a97b7e99175c4CAS | 25042592PubMed |

Callaini, G. (1985). Speleobiologica della Somalia. Cryptocheiridium somalicum n. sp. (Arachnida Pseudoscorpionida) delle grotte di Mugdile e Showli Berdi. Monitore Zoologico Italiano, n.s. Supplemento 20, 181–189.

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=7270e7b94b46ec4a30ad5328609b8552CAS | 10742046PubMed |

Chamberlin, J. C. (1931). The arachnid order Chelonethida. Stanford University Publications, Biological Sciences 7, 1–284.

Daniels, S. R., and Ruhberg, H. (2010). Molecular and morphological variation in a South African velvet worm Peripatopsis moseleyi (Onychophora, Peripatopsidae): evidence for cryptic speciation. Journal of Zoology 282, 171–179.
Molecular and morphological variation in a South African velvet worm Peripatopsis moseleyi (Onychophora, Peripatopsidae): evidence for cryptic speciation.Crossref | GoogleScholarGoogle Scholar |

Daniels, S. R., McDonald, D. E., and Picker, M. D. (2013). Evolutionary insight into the Peripatopsis balfouri sensu lato species complex (Onychophora: Peripatopsidae) reveals novel lineages and zoogeographic patterning. Zoologica Scripta 42, 656–674.

de Bivort, B. L., and Giribet, G. (2010). A systematic revision of the South African Pettalidae (Arachnida: Opiliones: Cyphophthalmi) based on a combined analysis of discrete and continuous morphological characters with the description of seven new species. Invertebrate Systematics 24, 371–406.
A systematic revision of the South African Pettalidae (Arachnida: Opiliones: Cyphophthalmi) based on a combined analysis of discrete and continuous morphological characters with the description of seven new species.Crossref | GoogleScholarGoogle Scholar |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=9d94fe4230b53e1213abb545ddca7e97CAS | 15034147PubMed |

Ellingsen, E. (1912). The pseudoscorpions of South Africa, based on the collections of the South African Museum, Cape Town. Annals of the South African Museum 10, 75–128.

Fernández, R., and Giribet, G. (2015). Unnoticed in the tropics: phylogenomic resolution of the poorly known arachnid order Ricinulei (Arachnida). Royal Society Open Science 2, 150065.
Unnoticed in the tropics: phylogenomic resolution of the poorly known arachnid order Ricinulei (Arachnida).Crossref | GoogleScholarGoogle Scholar | 26543583PubMed |

Fernández, R., Hormiga, G., and Giribet, G. (2014). Phylogenomic analysis of spiders reveals nonmonophyly of orb weavers. Current Biology 24, 1772–1777.
Phylogenomic analysis of spiders reveals nonmonophyly of orb weavers.Crossref | GoogleScholarGoogle Scholar | 25042584PubMed |

Giribet, G. (2003). Stability in phylogenetic formulations and its relationship to nodal support. Systematic Biology 52, 554–564.
Stability in phylogenetic formulations and its relationship to nodal support.Crossref | GoogleScholarGoogle Scholar | 12857646PubMed |

Giribet, G. (2007). Efficient tree searches with available algorithms. Evolutionary Bioinformatics 3, 1–16.

Giribet, G., Vogt, L., González, A. P., Sharma, P., and Kury, A. B. (2010). A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 26, 408–437.
A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., de Bivort, B. L., Hitchcock, A., and Swart, P. (2013). On Speleosiro argasiformis – a troglobitic Cyphophthalmi (Arachnida: Opiliones: Pettalidae) from Table Mountain, South Africa. The Journal of Arachnology 41, 416–419.
On Speleosiro argasiformis – a troglobitic Cyphophthalmi (Arachnida: Opiliones: Pettalidae) from Table Mountain, South Africa.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., McIntyre, E., Christian, E., Espinasa, L., Ferreira, R. L., Francke, Ó. F., Harvey, M. S., Isaia, M., Kováč, Ĺ., McCutchen, L., Souza, M. F. V. R., and Zagmajster, M. (2014). The first phylogenetic analysis of Palpigradi (Arachnida) – the most enigmatic arthropod order. Invertebrate Systematics 28, 350–360.

Harvey, M. S. (1992). The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida). Invertebrate Taxonomy 6, 1373–1435.
The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida).Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S. (2013). Pseudoscorpions of the World, version 3.0. Western Australian Museum, Perth. Available at: http://museum.wa.gov.au/catalogues-beta/pseudoscorpions [accessed 22 June 2015].

Harvey, M. S., and Du Preez, G. (2014). A new troglobitic ideoroncid pseudoscorpion (Pseudoscorpiones: Ideoroncidae) from southern Africa. The Journal of Arachnology 42, 105–110.
A new troglobitic ideoroncid pseudoscorpion (Pseudoscorpiones: Ideoroncidae) from southern Africa.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., and Edward, K. L. (2007). A review of the pseudoscorpion genus Ideoblothrus (Pseudoscorpiones, Syarinidae) from western and northern Australia. Journal of Natural History 41, 445–472.
A review of the pseudoscorpion genus Ideoblothrus (Pseudoscorpiones, Syarinidae) from western and northern Australia.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., and Mahnert, V. (2015). A new species of Sphaerowithius (Pseudoscorpiones, Withiidae) from Namibia. African Invertebrates 56, 491–497.
A new species of Sphaerowithius (Pseudoscorpiones, Withiidae) from Namibia.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., Ratnaweera, P. B., Udagama, P. V., and Wijesinghe, M. R. (2012). A new species of the pseudoscorpion genus Megachernes (Pseudoscorpiones: Chernetidae) associated with a threatened Sri Lankan rainforest rodent, with a review of host associations of Megachernes. Journal of Natural History 46, 2519–2535.
A new species of the pseudoscorpion genus Megachernes (Pseudoscorpiones: Chernetidae) associated with a threatened Sri Lankan rainforest rodent, with a review of host associations of Megachernes.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., Lopes, P. C., Goldsmith, G. R., Halajian, A., Hillyer, M., and Huey, J. A. (2015). A novel symbiotic relationship between sociable weaver birds (Philetairus socius) and a new cheliferid pseudoscorpion (Pseudoscorpiones: Cheliferidae) in southern Africa. Invertebrate Systematics 29, 444–456.
A novel symbiotic relationship between sociable weaver birds (Philetairus socius) and a new cheliferid pseudoscorpion (Pseudoscorpiones: Cheliferidae) in southern Africa.Crossref | GoogleScholarGoogle Scholar |

Judson, M. L. I. (2007). A new and endangered species of the pseudoscorpion genus Lagynochthonius from a cave in Vietnam, with notes on chelal morphology and the composition of the Tyrannochthoniini (Arachnida, Chelonethi, Chthoniidae). Zootaxa 1627, 53–68.

Lawrence, R. F. (1931a). The harvest-spiders (Opiliones) of South Africa. Annals of the South African Museum 29, 341–508.

Lawrence, R. F. (1931b). A new peripatopsid from the Table Mountain caves. Annals of the South African Museum 30, 101–107.

Lawrence, R. F. (1935). A cavernicolous false scorpion from Table Mountain, Cape Town. Annals & Magazine of Natural History: Series 10 15, 549–555.
A cavernicolous false scorpion from Table Mountain, Cape Town.Crossref | GoogleScholarGoogle Scholar |

Mahnert, V. (1988). Die Pseudoskorpione (Arachnida) Kenyas. Familien Withiidae und Cheliferidae. Tropical Zoology 1, 39–89.
Die Pseudoskorpione (Arachnida) Kenyas. Familien Withiidae und Cheliferidae.Crossref | GoogleScholarGoogle Scholar |

Mallatt, J., and Giribet, G. (2006). Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Molecular Phylogenetics and Evolution 40, 772–794.
Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFWktbo%3D&md5=8e6640f413ad156a6b31fc1451fa1015CAS | 16781168PubMed |

Miller, M. A., Holder, M. T., Vos, R., Midford, P. E., Liebowitz, T., Chan, L., Hoover, P., and Warnow, T. (2009). The CIPRES Portals. Available at: http://www.phylo.org/sub_sections/portal [accessed 8 March 2011. (Archived by WebCite(r) at http://www.webcitation.org/5imQlJeQa)

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans’. pp. 1–8.

Murienne, J., Harvey, M. S., and Giribet, G. (2008). First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata). Molecular Phylogenetics and Evolution 49, 170–184.
First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOltrzP&md5=73a5a2490f7512ce9da2bdcc4a3de0deCAS | 18603009PubMed |

Ruhberg, H., and Daniels, S. R. (2013). Morphological assessment supports the recognition of four novel species in the widely distributed velvet worm Peripatopsis moseleyi sensu lato (Onychophora: Peripatopsidae). Invertebrate Systematics 27, 131–145.
Morphological assessment supports the recognition of four novel species in the widely distributed velvet worm Peripatopsis moseleyi sensu lato (Onychophora: Peripatopsidae).Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., Vahtera, V., Kawauchi, G. Y., and Giribet, G. (2011). Running WILD: the case for exploring mixed parameter sets in sensitivity analysis. Cladistics 27, 538–549.
Running WILD: the case for exploring mixed parameter sets in sensitivity analysis.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=75f7f4dcbee031d89a4fac72e69aca2fCAS | 16928733PubMed |

Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758–771.
A rapid bootstrap algorithm for the RAxML web servers.Crossref | GoogleScholarGoogle Scholar | 18853362PubMed |

Tullgren, A. (1907). Chelonethiden aus Natal und Zululand. In ‘Zoologiska Studier Tillägnade Professor T. Tullberg’. (Ed. A. Wirén.) pp. 216–236. (Almquist and Wiksells: Uppsala.)

Vachon, M. (1958). Sur deux pseudoscorpions nouveaux des cavernes de l’Afrique équatoriale [Ideoroncidae]. Notes Biospéologiques 13, 57–66.

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |

Vitali-di Castri, V. (1963). La familia Vachoniidae (=Gymnobisiidae) en Chile (Arachnidea, Pseudoscorpionida). Investigaciones Zoológicas Chilenas 10, 27–82.

Vitali-di Castri, V. (1970a). Revision de la sistematica y distribucion de los Gymnobisiinae (Pseudoscorpionida, Vachoniidae). Boletín de la Sociedad de Biología de Concepción 42, 123–135.

Vitali-di Castri, V. (1970b). Un nuevo genero de Gymnobisiinae (Pseudoscorpionida) de las Islas Malvinas. Revisión taxonómica de la subfamilia. Physis, Buenos Aires 30, 1–9.

Vitali-di Castri, V., and Castri, F. d. (1970). L’évolution du dimorphisme sexuel dans une lignée de pseudoscorpions. Bulletin du Muséum National d’Histoire Naturelle, Paris (20) 42, 382–391.

Wheeler, W. C. (1995). Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology 44, 321–331.
Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data.Crossref | GoogleScholarGoogle Scholar |

Wheeler, W. (1996). Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12, 1–9.
Optimization alignment: the end of multiple sequence alignment in phylogenetics?Crossref | GoogleScholarGoogle Scholar |

Wheeler, W. C., Lucaroni, N., Hong, L., Crowley, L. M., and Varón, A. (2015). POY version 5: phylogenetic analysis using dynamic homologies under multiple optimality criteria. Cladistics 31, 189–196.
POY version 5: phylogenetic analysis using dynamic homologies under multiple optimality criteria.Crossref | GoogleScholarGoogle Scholar |