Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Phylogeny and population genetic structure of the ant genus Acropyga (Hymenoptera : Formicidae) in Papua New Guinea

Milan Janda A C E F , Pável Matos-Maraví A B , Michaela Borovanska A , Jan Zima Jr. A B , Eric Youngerman C D and Naomi E. Pierce C
+ Author Affiliations
- Author Affiliations

A Biology Centre of Czech Academy of Sciences, Branisovska 31, Ceske Budejovice, 37005, Czech Republic.

B Department of Zoology, Faculty of Science, University of South Bohemia, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.

C Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

D Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.

E Department of Biology, University of Guanajuato, Guanajuato, Mexico.

F Corresponding author. Email: janda@entu.cas.cz

Invertebrate Systematics 30(1) 28-40 https://doi.org/10.1071/IS14050
Submitted: 9 September 2014  Accepted: 1 November 2015   Published: 16 March 2016

Abstract

Spatial isolation and geological history are important factors in the diversification and population differentiation of species. Here we describe distributional patterns of ants in the genus Acropyga across Papua New Guinea (PNG), a highly biodiverse but little-studied region. We estimate phylogenetic relationships among currently recognised species of Acropyga and assess population genetic structure of the widespread species, A. acutiventris, across lowland areas of the island. We find that species of Acropyga present in PNG diversified during the Pliocene, between six and two million years ago. Most species now exhibit a patchy distribution that does not show a strong signal of geological history. However, the population genetic structure of the widespread species A. acutiventris has been influenced by geography, habitat association and, possibly, historical habitat fragmentation. There is a significant effect of isolation-by-distance within continuous lowland forest, and proximity to Australia has had a larger impact in structuring populations of A. acutiventris in PNG than has the Central Papuan Cordillera. This study is the first to describe population genetic patterns of an ant species in Papua New Guinea.


References

Agosti, D., Majer, J., Alonso, L., and Schultz, T. (Eds) (2000). ‘Ants: Standard Methods for Measuring and Monitoring Biodiversity.’ Biological diversity handbook series. (Smithsonian Institution Press: Washington, DC.)

Balke, M., Ribera, I., and Vogler, A. P. (2004). MtDNA phylogeny and biogeography of Copelatinae, a highly diverse group of tropical diving beetles (Dytiscidae). Molecular Phylogenetics and Evolution 32, 866–880.
MtDNA phylogeny and biogeography of Copelatinae, a highly diverse group of tropical diving beetles (Dytiscidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Cntrg%3D&md5=ca667ed1e4b1b0c69c6c19357666d992CAS | 15288062PubMed |

Bünzli, G. H. (1935). Untersuchungen über coccidophile Ameisen aus den Kaffeefeldern von Surinam. Mitteilungen der Schweizerische Entomologische Gesellschaft 16, 453–593.

Carstens, B. C., and Knowles, L. L. (2007). Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: an example from Melanoplus grasshoppers. Systematic Biology 56, 400–411.
Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: an example from Melanoplus grasshoppers.Crossref | GoogleScholarGoogle Scholar | 17520504PubMed |

Cloos, M., Sapiie, B., Quarles van Ufford, A., Weiland, R. J., Warren, P. Q., and McMahon, T. P. (2005). Collisional delamination in New Guinea: the geotectonics of subducting slab breakoff. Geological Society of America Special Papers 400, 1–51.

Clouse, R., Janda, M., Blanchard, B., Sharma, P., Andersen, A., Czekanski-Moir, J., Kruschelnycky, P., Rabeling, C., Economo, E. P., Sarnat, E. M., General, D., Alpert, G., and Wheeler, W. (2014). Molecular phylogeny of Indo-Pacific carpenter ants (Hymenoptera: Formicidae, Camponotus) reveals waves of dispersal and colonization from diverse sources. Cladistics 31, 424–437.

Corander, J., Sirén, J., and Arjas, E. (2008). Bayesian spatial modeling of genetic population structure. Computational Statistics 23, 111–129.
Bayesian spatial modeling of genetic population structure.Crossref | GoogleScholarGoogle Scholar |

Craft, K. J., Pauls, S. U., Darrow, K., Miller, S. E., Hebert, P. D. N., Helgen, L. E., Novotny, V., and Weiblen, G. D. (2010). Population genetics of ecological communities with DNA barcodes: an example from New Guinea Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 107, 5041–5046.
Population genetics of ecological communities with DNA barcodes: an example from New Guinea Lepidoptera.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFGntL8%3D&md5=b159594414a1ff702073034029655d84CAS | 20202924PubMed |

Deiner, K., Lemmon, A. R., Mack, A. L., Fleischer, R. C., and Dumbacher, J. P. (2011). A passerine bird’s evolution corroborates the geologic history of the island of New Guinea. PLoS One 6, e19479.
A passerine bird’s evolution corroborates the geologic history of the island of New Guinea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFKju7Y%3D&md5=cee23c0eb8e9d2a7b31ac5004f4bbbc3CAS | 21573115PubMed |

DeSalle, R., Templeton, A., Mori, I., Pletscher, S., and Johnston, J. S. (1987). Temporal and spatial heterogeneity of mtDNA polymorphisms in natural populations of Drosophila mercatorum. Genetics 116, 215–223.
| 1:CAS:528:DyaL2sXkslWqsbc%3D&md5=b97484917ba23836683e3efdbac165d5CAS | 3038671PubMed |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=5ab730c939a1ffbe2d25920cbdfa4ea5CAS | 22367748PubMed |

Dupanloup, I., Schneider, S., and Excoffier, L. (2002). A simulated annealing approach to define the genetic structure of populations. Molecular Ecology 11, 2571–2581.
A simulated annealing approach to define the genetic structure of populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38nptlaksw%3D%3D&md5=113353ce6fad4caf8cf9d6507f5c43a7CAS | 12453240PubMed |

Dyer, L. A., Singer, M. S., Lill, J. T., Stireman, J. O., Gentry, G. L., Marquis, R. J., Ricklefs, R. E., Greeney, H. F., Wagner, D. L., Morais, H. C., Diniz, I. R., Kursar, T. A., and Coley, P. D. (2007). Host specificity of Lepidoptera in tropical and temperate forests. Nature 448, 696–699.
Host specificity of Lepidoptera in tropical and temperate forests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1yks7g%3D&md5=aaec2153fc7cd956a4c47f10c52cba03CAS | 17687325PubMed |

Economo, E. P., Klimov, P., Sarnat, E. M., Guenard, B., Weiser, M., Lecroq, B., and Knowles, L. L. (2015). Global phylogenetic structure of the hyperdiverse ant genus Pheidole reveals the repeated evolution of macroecological patterns. Proceedings of the Royal Society Series B 282, 20141416.

Excoffier, L., and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.
Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Crossref | GoogleScholarGoogle Scholar | 21565059PubMed |

Godinho, R., Crespo, E. G., and Ferrand, N. (2008). The limits of mtDNA phylogeography: complex patterns of population history in a highly structured Iberian lizard are only revealed by the use of nuclear markers. Molecular Ecology 17, 4670–4683.
The limits of mtDNA phylogeography: complex patterns of population history in a highly structured Iberian lizard are only revealed by the use of nuclear markers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2FmslGrug%3D%3D&md5=4791c6bfcf146ec438d5a9eaaf381675CAS | 18828782PubMed |

Gressitt, J. L. (1982a). ‘Biogeography and Ecology of New Guinea’, Vols 1 and 2. (Dr W. Junk: The Hague, Netherlands.)

Gressitt, J. L. (1982b). Ecology and biogeography of New Guinea Coleoptera. Monographiae Biologicae 42, 709–734.
Ecology and biogeography of New Guinea Coleoptera.Crossref | GoogleScholarGoogle Scholar |

Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Kms7s%3D&md5=b402c31de7abcf3c1ee147ae3126e684CAS | 20525638PubMed |

Haig, D. W., and Medd, D. (1996). Latest Miocene to early Pliocene bathymetric cycles related to tectonism, Puri Anticline, Papuan Basin, Papua New Guinea. Australian Journal of Earth Sciences 43, 451–465.
Latest Miocene to early Pliocene bathymetric cycles related to tectonism, Puri Anticline, Papuan Basin, Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Hall, R. (1998). The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In ‘Biogeography and Geological Evolution of SE Asia’. (Eds R. Hall and J. D. Holloway.) pp. 99–131. (Backhuys Publishers: Leiden, Netherlands.)

Hall, R. (2001). Extension during late Neogene collision in east Indonesia and New Guinea. Journal of the Virtual Explorer 4, 1–14.
Extension during late Neogene collision in east Indonesia and New Guinea.Crossref | GoogleScholarGoogle Scholar |

Heads, M. (2001). Birds of paradise, biogeography and ecology in New Guinea: a review. Journal of Biogeography 28, 893–925.
Birds of paradise, biogeography and ecology in New Guinea: a review.Crossref | GoogleScholarGoogle Scholar |

Heads, M. (2002). Regional patterns of biodiversity in New Guinea animals. Journal of Biogeography 29, 285–294.
Regional patterns of biodiversity in New Guinea animals.Crossref | GoogleScholarGoogle Scholar |

Heads, M. (2006). Biogeography, ecology and tectonics in New Guinea. Journal of Biogeography 33, 957–958.
Biogeography, ecology and tectonics in New Guinea.Crossref | GoogleScholarGoogle Scholar |

Hill, K. C., and Gleadow, A. J. W. (1989). Uplift and thermal history of the Papuan Fold Belt, Papua New Guinea: apatite fission track analysis. Australian Journal of Earth Sciences 36, 515–539.
Uplift and thermal history of the Papuan Fold Belt, Papua New Guinea: apatite fission track analysis.Crossref | GoogleScholarGoogle Scholar |

Janda, M., Alpert, G. D., Borowiec, M. L., Economo, E. P., Klimes, P., Sarnat, E., and Shattuck, S. O. (2014). Checklist of New Guinea ants (version 22–02–14). Available at http://www.newguineants.org [Accessed on 1 July 2014].

Jensen, J., Bohonak, A., and Kelley, S. (2005). Isolation by distance, web service. BMC Genetics 6, 13.
Isolation by distance, web service.Crossref | GoogleScholarGoogle Scholar | 15760479PubMed |

Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslOqu7s%3D&md5=c6cb53f7cbd77ffe9fc04401f03d724bCAS | 12136088PubMed |

Kearns, A. M., Joseph, L., Omland, K. E., and Cook, L. G. (2011). Testing the effect of transient Plio-Pleistocene barriers in monsoonal Australo-Papua: did mangrove habitats maintain genetic connectivity in the black butcherbird? Molecular Ecology 20, 5042–5059.
Testing the effect of transient Plio-Pleistocene barriers in monsoonal Australo-Papua: did mangrove habitats maintain genetic connectivity in the black butcherbird?Crossref | GoogleScholarGoogle Scholar | 22060632PubMed |

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
| 22543367PubMed |

LaPolla, J. S. (2004). Acropyga (Hymenoptera: Formicidae) of the world. Contributions of the American Entomological Institute 33, 1–130.

LaPolla, J. S. (2005). Ancient trophophoresy: a fossil Acropyga (Hymenoptera: Formicidae) from Dominican amber. Transactions of the American Entomological Society 131, 21–28.

LaPolla, J. S., Cover, S. P., and Mueller, U. G. (2002). Natural history of the mealybug-tending ant Acropyga epedana, with descriptions of the male and queen castes. Transactions of the American Entomological Society 128, 367–376.

Leppänen, J., Vepsäläinen, K., and Savolainen, R. (2011). Phylogeography of the ant Myrmica rubra and its inquiline social parasite. Ecology and Evolution 1, 46–62.
Phylogeography of the ant Myrmica rubra and its inquiline social parasite.Crossref | GoogleScholarGoogle Scholar | 22393482PubMed |

Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFeqtr8%3D&md5=106edebfeb16e2122e13f701b6a1fea0CAS | 19346325PubMed |

Macqueen, P., Goldizen, A. W., Austin, J. J., and Seddon, J. M. (2011). Phylogeography of the pademelons (Marsupialia: Macropodidae: Thylogale) in New Guinea reflects both geological and climatic events during the Plio-Pleistocene. Journal of Biogeography 38, 1732–1747.
Phylogeography of the pademelons (Marsupialia: Macropodidae: Thylogale) in New Guinea reflects both geological and climatic events during the Plio-Pleistocene.Crossref | GoogleScholarGoogle Scholar |

Manni, F., Guerard, E., and Heyer, E. (2004). Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Human Biology 76, 173–190.
Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm.Crossref | GoogleScholarGoogle Scholar | 15359530PubMed |

McNiven, I., David, B., Aplin, K., Mialanes, J., Asmussen, B., Ulm, S., Faulkner, P., Rowe, C., and Richards, T. (2012). Terrestrial engagements by terminal Lapita maritime specialists on the southern Papuan coast. In ‘Peopled Landscapes: Archaeological and Biogeographic Approaches to Landscapes’. (Eds S.G. Haberle and B. David.) pp. 121–156. (ANU E Press: Canberra.)

Michaux, B. (1994). Land movements and animal distributions in east Wallacea (eastern Indonesia, Papua New Guinea and Melanesia). Palaeogeography, Palaeoclimatology, Palaeoecology 112, 323–343.
Land movements and animal distributions in east Wallacea (eastern Indonesia, Papua New Guinea and Melanesia).Crossref | GoogleScholarGoogle Scholar |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Gateway Computing Environments Workshop, New Orleans, LA, 14 November 2010’. pp. 1–8.

Moreau, C. S., and Bell, C. D. (2013). Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67, 2240–2257.
Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants.Crossref | GoogleScholarGoogle Scholar | 23888848PubMed |

Murphy, S. A., Double, M. C., and Legge, S. M. (2007). The phylogeography of palm cockatoos, Probosciger aterrimus, in the dynamic Australo-Papuan region. Journal of Biogeography 34, 1534–1545.
The phylogeography of palm cockatoos, Probosciger aterrimus, in the dynamic Australo-Papuan region.Crossref | GoogleScholarGoogle Scholar |

Nee, S., Holmes, E. C., May, R. M., and Harvey, P. H. (1994). Extinction rates can be estimated from molecular phylogenies. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 344, 77–82.
Extinction rates can be estimated from molecular phylogenies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s%2Fjt1eltg%3D%3D&md5=105ea6edefbc4a9ade0423defec91360CAS | 8878259PubMed |

Novotny, V., Miller, S. E., Hulcr, J., Drew, R. A. I., Basset, Y., Janda, M., Setliff, G. P., Darrow, K., Stewart, A. J. A., Auga, J., Isua, B., Molem, K., Manumbor, M., Tamtiai, E., Mogia, M., and Weiblen, G. D. (2007). Low beta diversity of herbivorous insects in tropical forests. Nature 448, 692–695.
Low beta diversity of herbivorous insects in tropical forests.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1yksL0%3D&md5=ae7019806dccf333ebb4b1a2594e59e2CAS | 17687324PubMed |

Peakall, R., and Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28, 2537–2539.
GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVehtbjI&md5=8cbd3f69bee1dd00686b64f8659c4bc3CAS | 22820204PubMed |

Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=53928922981f8b5b3119f47393588dfaCAS | 18397919PubMed |

Quek, S. P., Davies, S. J., Itino, T., and Pierce, N. E. (2004). Codiversification in an ant-plant mutualism: stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae). Evolution 58, 554–570.
Codiversification in an ant-plant mutualism: stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFylurc%3D&md5=1bdbfa77c48e6236bd027806a077e3eeCAS | 15119439PubMed |

Ramos-Onsins, S. E., and Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19, 2092–2100.
Statistical properties of new neutrality tests against population growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps12hsrc%3D&md5=c8aae95c30c1b9fa492e49db162a526aCAS | 12446801PubMed |

Ratnasingham, S., and Hebert, P. D. N. (2007). BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes 7, 355–364.
| 1:CAS:528:DC%2BD2sXntVyksbc%3D&md5=c1b926825aab11029a0873542a0ae8d2CAS | 18784790PubMed |

Rodriguez, F., Perez, T., Hammer, S. E., Albornoz, J., and Dominguez, A. (2010). Integrating phylogeographic patterns of microsatellite and mtDNA divergence to infer the evolutionary history of chamois (genus Rupicapra). BMC Evolutionary Biology 10, 222.
| 20649956PubMed |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Schneider, S. A., and LaPolla, J. S. (2011). Systematics of the mealybug tribe Xenococcini (Hemiptera: Coccoidea: Pseudococcidae), with a discussion of trophobiotic associations with Acropyga Roger ants. Systematic Entomology 36, 57–82.
Systematics of the mealybug tribe Xenococcini (Hemiptera: Coccoidea: Pseudococcidae), with a discussion of trophobiotic associations with Acropyga Roger ants.Crossref | GoogleScholarGoogle Scholar |

Smith, M. A., Fisher, B. L., and Hebert, P. D. (2005). DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 1825–1834.
DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrjP&md5=116c33c9231b490d6068d4301a0b600fCAS | 16214741PubMed |

Stephens, M., Smith, N. J., and Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68, 978–989.
A new statistical method for haplotype reconstruction from population data.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3kslWgsA%3D%3D&md5=a1011db8b2b41993f303f3395828d654CAS | 11254454PubMed |

Stireman, J. O. I., Nason, J. D., and Heard, S. (2005). Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod-insect community. Evolution 59, 2573–2587.
Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod-insect community.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVOrsw%3D%3D&md5=11ab7ddf66d125e083bc1a4ba0463d79CAS |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=00800be2ffa36aa51eab374da9e74db5CAS | 21546353PubMed |

Teacher, A. G. F., and Griffiths, D. J. (2011). HapStar: automated haplotype network layout and visualization. Molecular Ecology Resources 11, 151–153.
HapStar: automated haplotype network layout and visualization.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M3ptFaqsg%3D%3D&md5=950cf72648b4c9e676bc1582fa07b5bbCAS |

Torgersen, T., Luly, J., De Deckker, P., Jones, M. R., Searle, D. E., Chivas, A. R., and Ullman, W. J. (1988). Late Quaternary environments of the Carpentaria Basin, Australia. Australian Journal of Earth Sciences 35, 313–324.

Toussaint, E. F., Hall, R., Monaghan, M. T., Sagata, K., Ibalim, S., Shaverdo, H. V., Vogler, A. P., Pons, J., and Balke, M. (2014). The towering orogeny of New Guinea as a trigger for arthropod megadiversity. Nature Communications 5, .
The towering orogeny of New Guinea as a trigger for arthropod megadiversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVWgt7%2FE&md5=62d6c1f633d092f9057ee781db56a272CAS | 24874774PubMed |

Trucchi, E., Gratton, P., Whittington, J. D., Cristofari, R., Le Maho, Y., Stenseth, N. C., and Le Bohec, C. (2014). King penguin demography since the last glaciation inferred from genome-wide data. Proceedings of the Royal Society Series B 281, 20140528.

Van Zandt Brower, A. (1994). Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences (Lepidoptera: Nymphalidae). Molecular Phylogenetics and Evolution 3, 159–174.
Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences (Lepidoptera: Nymphalidae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2czls1alsQ%3D%3D&md5=b8868d2885c41e48f7d3411ee2ac9c67CAS | 8075834PubMed |

Voris, H. K. (2000). Maps of Pleistocene sea levels in southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27, 1153–1167.

Wakeley, J., and Aliacar, N. (2001). Gene genealogies in a metapopulation. Genetics 159, 893–905.
| 1:STN:280:DC%2BD3MrmtVGrug%3D%3D&md5=de384be5c74ea2c3ed0b3c8b135cfba0CAS | 11606561PubMed |

Williams, D. J. (1998). Mealybugs of the genera Eumyrmococcus Silvestri and Xenococcus Silvestri associated with the ant genus Acropyga Roger and a review of the subfamily Rhizoecinae (Hemiptera, Coccoidea, Pseudococcidae). Bulletin of the British Museum (Natural History). Entomology Series 67, 1–64.

Williams, D. J., O’shea, M., Daguerre, R. I., Pook, C. E., Wüster, W., and Christopher, J. (2008). Origin of the eastern brownsnake, Pseudonaja textilis (Dumeril, Bibron and Dumeril) (Serpentes: Elapidae: Hydrophiinae) in New Guinea: evidence of multiple dispersals from Australia, and comments on the status of Pseudonaja textilis pughi Hoser 2003. Zootaxa 1703, 47–61.