Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

A preliminary molecular analysis of phylogenetic and biogeographic relationships of New Zealand Thomisidae (Araneae) using a multi-locus approach

Philip J. Sirvid A C E , Nicole E. Moore B , Geoffrey K. Chambers C and Kelly Prendergast D
+ Author Affiliations
- Author Affiliations

A Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6140, New Zealand.

B ESR, Institute of Environmental Science & Research, National Centre for Biosecurity and Infectious Disease, PO Box 40158, Upper Hutt 5140, New Zealand.

C School of Biological Sciences, Victoria University, PO Box 600, Wellington 6140, New Zealand.

D Malaghan Institute of Medical Research, Victoria University, PO Box 7060, Wellington 6242, New Zealand.

E Corresponding author. Email: Phils@tepapa.govt.nz

Invertebrate Systematics 27(6) 655-672 https://doi.org/10.1071/IS13025
Submitted: 23 May 2013  Accepted: 8 October 2013   Published: 20 December 2013

Abstract

We tested competing theories on the origins of the New Zealand fauna using thomisid spiders as a model group. These theories can be broadly described as old and vicariant versus young and recent (dispersal). To test these theories, a phylogenetic analysis was undertaken based on cytochrome c oxidase subunit I (COI) and 28S rRNA sequence data, with smaller datasets (histone H3, nicotinamide adenine dinucleotide (NADH) dehydrogenase subunit 1 and a combined dataset) used to improve resolution of internal branches. The monophyly of New Zealand thomisid subfamilies and of individual taxa were also assessed using these data. Our data supports the separation of New Zealand clades from their Australian counterparts. Evidence of recent dispersal to New Zealand by Australian stephanopines combined with our proposed maximum divergence date of 5.3 mya indicates that the New Zealand thomisids are a younger lineage than previously suspected. Several other gene targets (internal transcribed spacer units 1 and 2, wingless and 18S rRNA) were examined but did not generate sufficient reliable data to contribute to the analysis. Corrected p-distance values for COI indicate that Sidymella angularis, a widely distributed and morphologically variable stephanopine species, is a single taxon. Three undescribed endemic species exhibited molecular and morphological distinctiveness from previously described New Zealand thomisids.

Additional keywords: 28S, Australia, COI, Diaea, DNA, H3, ND1, phylogenetics, Sidymella, Stephanopinae, Thomisinae.


References

Arnedo, M. A., and Gillespie, R. G. (2006). Species diversification patterns in the Polynesian jumping spider genus Havaika Prószynski, 2001 (Araneae, Salticidae). Molecular Phylogenetics and Evolution 41, 472–495.
Species diversification patterns in the Polynesian jumping spider genus Havaika Prószynski, 2001 (Araneae, Salticidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVagtb3M&md5=84c16bc296f192466f8f63698fa04f44CAS | 16837219PubMed |

Barrett, R. D. H., and Hebert, P. D. N. (2005). Identifying spiders through DNA barcodes. Canadian Journal of Zoology 83, 481–491.
Identifying spiders through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFylsrk%3D&md5=68b4114ef500ae8406b4bfad70318bbaCAS |

Benjamin, S. P., Dimitrov, D., Gillespie, R. G., and Hormiga, G. (2008). Family ties: molecular phylogeny of crab spiders (Araneae: Thomisidae). Cladistics 24, 708–722.
Family ties: molecular phylogeny of crab spiders (Araneae: Thomisidae).Crossref | GoogleScholarGoogle Scholar |

Berland, L. (1931). Araignees des iles Auckland et Campbell. Records of the Canterbury Museum 3, 357–365.

Blackledge, T. A., Scharff, N., Coddington, J. A., Szüts, T., Wenzel, J. W., Hayashi, C. Y., and Agnarsson, I. (2009). Reconstructing web evolution and spider diversification in the molecular era. Proceedings of the National Academy of Sciences of the United States of America 106, 5229–5234.
Reconstructing web evolution and spider diversification in the molecular era.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVertL8%3D&md5=1290a06eb671c0eb72d0090f3c520ef6CAS | 19289848PubMed |

Blandenier, G., and Fürst, P.-A. (1998). Ballooning spiders caught by a suction trap in an agricultural landscape in Switzerland. In ‘Proceedings of the 17th European Colloquium of Arachnology, Edinburgh 1997’. (Ed. W. P. A. Selden.) pp 177–186. (British Arachnological Society, Burnham Beeches, Buckinghamshire, UK.)

Bond, J. E., and Hedin, M. (2006). A total evidence assessment of the phylogeny of North American euctenizine trapdoor spiders (Araneae, Mygalomorphae, Cyrtaucheniidae). Molecular Phylogenetics and Evolution 41, 70–85.
A total evidence assessment of the phylogeny of North American euctenizine trapdoor spiders (Araneae, Mygalomorphae, Cyrtaucheniidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVWksLk%3D&md5=28098e27a0a3daa80ff265287f96c8ccCAS | 16857391PubMed |

Brower, A. V. Z. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America 91, 6491–6495.
Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1KrsLw%3D&md5=3a675438e37adf915de3540209eb32c6CAS |

Bryant, E. B. (1933). Notes on types of Urquhart’s spiders. Records of the Canterbury Museum 4, 1–27.

Bryant, E. B. (1935). Notes on some of Urquhart’s species of spiders. Records of the Canterbury Museum 4, 53–70.

Chang, J., Song, D., and Zhou, K. (2007). Incongruous nuclear and mitochondrial phylogeographic patterns in two sympatric lineages of the wolf spider Pardosa astrigera (Araneae: Lycosidae) from China. Molecular Phylogenetics and Evolution 42, 104–121.
Incongruous nuclear and mitochondrial phylogeographic patterns in two sympatric lineages of the wolf spider Pardosa astrigera (Araneae: Lycosidae) from China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cgsb3F&md5=62bc1775636c19fbf2ab666e23279145CAS | 16905338PubMed |

Colgan, D. J., McLauchlan, A., Wilson, G. D. F., Livingston, S. P., Edgecombe, G. D., Macaranas, J., Cassis, G., and Gray, M. R. (1998). Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46, 419–437.
Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=ee07da9a65a0870abe0f07bc94aa5909CAS | 22367748PubMed |

Dunlop, J. A., Penney, D., and Jekel, D. (2011). A summary list of fossil spiders and their relatives. In ‘The World Spider Catalog, Version 11.5’. (Ed. N. I. Platnick.). Available at http://research.amnh.org/entomology/spiders/catalog/index.html [Accessed 20 December 2010]

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=5041ee59b321d3be53c601c4defe3469CAS | 7881515PubMed |

Forster, R. R. (1964). The Araneae and Opiliones of the subantarctic islands of New Zealand. Pacific Insects Monographs 7, 58–115.

Forster, R. R. (1975). The spiders and harvestmen. In ‘Biogeography and Ecology in New Zealand’. (Ed. G. Kuschel.) pp. 493–505. (W. Junk: The Hague.)

Forster, R. R., and Forster, L. (1999). ‘Spiders of New Zealand and their Worldwide Kin.’ (University of Otago Press: Dunedin, New Zealand.)

Forster, R. R., and Platnick, N. I. (1985). A review of the austral spider family Orsolobidae (Arachnida, Araneae), with notes on the superfamily Dysderoidea. Bulletin of the American Museum of Natural History 181, 1–230.

Forster, R. R., and Wilton, C. L. (1973). The spiders of New Zealand. Part 4. Otago Museum Bulletin 4, 1–309.

Garb, J. E. (1999). An adaptive radiation of Hawaiian Thomisidae: biogeographic and genetic evidence. The Journal of Arachnology 27, 71–78.

Garb, J. E., and Gillespie, R. G. (2006). Island hopping across the central Pacific: mitochondrial DNA detects sequential colonization of the Austral Islands by crab spiders (Araneae: Thomisidae). Journal of Biogeography 33, 201–220.
Island hopping across the central Pacific: mitochondrial DNA detects sequential colonization of the Austral Islands by crab spiders (Araneae: Thomisidae).Crossref | GoogleScholarGoogle Scholar |

Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFSns7g%3D&md5=170eda66ea250b135b343913ad585785CAS | 3934395PubMed |

Hedin, M. C. (1997). Molecular phylogenetics at the population/species interface in cave spiders of the southern Appalachians (Araneae: Nesticidae: Nesticus). Molecular Biology and Evolution 14, 309–324.
Molecular phylogenetics at the population/species interface in cave spiders of the southern Appalachians (Araneae: Nesticidae: Nesticus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhslSjsLY%3D&md5=b1b09b4b9bcf6438f03663cea296e311CAS | 9066798PubMed |

Hedin, M. C., and Maddison, W. P. (2001). A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 18, 386–403.
A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1ansbg%3D&md5=b6c4265f38091e56f78665822b49e2e9CAS | 11277632PubMed |

Hogg, H. R. (1910). Spiders and Opiliones from the subantarctic islands of New Zealand. In ‘The Subantarctic Islands of New Zealand’. Vol. 1, pp. 155–181. (Wellington.)

Jackson, R. R., Taylor, P. W., McGill, A. S., and Pollard, S. D. (1995). The web and prey-capture behaviour of Diaea sp., a crab spider (Thomisidae) from New Zealand. Records of the Western Australian Museum 52, 33–37.

Ji, Y.-J., Zhang, D.-X., and He, L.-J. (2003). Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Molecular Ecology Notes 3, 581–585.
Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks12ltA%3D%3D&md5=33a5b2755f8a312d818dcd37eed567f8CAS |

Jocqué, R., and Dippenaar-Schoeman, A. S. (2007). ‘Spider Families of the World.’ (Musée Royal de l’Afrique Central: Tervuren, Belgium.)

Johannesen, J., and Veith, M. (2001). Population history of Eresus cinnaberinus (Araneae: Eresidae) colour variants at a putative species transition. Heredity 87, 114–124.
Population history of Eresus cinnaberinus (Araneae: Eresidae) colour variants at a putative species transition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MrntVOlsA%3D%3D&md5=7713f0cacbaf00f0f72946b697263690CAS | 11678993PubMed |

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=49bc963b99619aa3d2df7d27d95383eaCAS | 7463489PubMed |

Landis, C. A., Campbell, H. J., Begg, J. G., Mildenhall, D. C., Paterson, A. M., and Trewick, S. A. (2008). The Waipounamu erosion surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geological Magazine 145, 173–197.
The Waipounamu erosion surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora.Crossref | GoogleScholarGoogle Scholar |

Lehtinen, P. K. (1993). Polynesian Thomisidae – a meeting of old and new world groups. Memoirs of the Queensland Museum 33, 585–591.

Paquin, P., and Vink, C. J. (2009). Testing compatibility between molecular and morphological techniques for arthropod systematics: a minimally destructive DNA extraction method that preserves morphological integrity, and the effect of lactic acid on DNA quality. Journal of Insect Conservation 13, 453–457.
Testing compatibility between molecular and morphological techniques for arthropod systematics: a minimally destructive DNA extraction method that preserves morphological integrity, and the effect of lactic acid on DNA quality.Crossref | GoogleScholarGoogle Scholar |

Paquin, P., Vink, C. J. and, Dupérré, N. (2010). ‘Spiders of New Zealand: Annotated Family Key and Species List.’ (Manaaki Whenua Press, Landcare Research: Christchurch.)

Platnick, N. I. (1993). The araneomorph fauna of New Caledonia. Biodiversity Letters 1, 102–106.
The araneomorph fauna of New Caledonia.Crossref | GoogleScholarGoogle Scholar |

Platnick, N. I. (2013). ‘The World Spider Catalog’, version 13.5. American Museum of Natural History, Available at http://research.amnh.org/iz/spiders/catalog. [Accessed 30 January 2013] 10.5531/db.iz.0001

Rambaut, A., and Drummond, A. J. (2007). ‘Tracer v1.4’, available at http://beast.bio.ed.ac.uk/Tracer

Rambaut, A. (2012). ‘FigTree v 1.4’, available at http://tree.bio.ed.ac.uk/software/figtree/

Rix, M. G., and Harvey, M. S. (2012). Phylogeny and historical biogeography of ancient assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: evidence for miocene speciation within Tertiary refugia. Molecular Phylogenetics and Evolution 62, 375–396.
Phylogeny and historical biogeography of ancient assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: evidence for miocene speciation within Tertiary refugia.Crossref | GoogleScholarGoogle Scholar | 22040763PubMed |

Robinson, E. A., Blagoev, F. A., Hebert, P. D. N., and Adamowicz, S. J. (2009). Prospects for using DNA barcoding to identify spiders in species-rich genera. ZooKeys 16, 27–46.

Rychlik, W., Spencer, W. J., and Rhoades, R. E. (1990). Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Research 18, 6409–6412.
Optimization of the annealing temperature for DNA amplification in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVehtA%3D%3D&md5=1a7fd2dc67879ee4e4080b4599c60f78CAS | 2243783PubMed |

Satler, J. D., Starrett, J., Hayashi, C. Y., and Hedin, M. (2011). Inferring species trees from gene trees in a radiation of California trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus). PLoS ONE 6, e25355.
Inferring species trees from gene trees in a radiation of California trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtleisLvF&md5=842e3765c85023475a6ee4fea90707f0CAS | 21966507PubMed |

Selden, P. A., and Penney, D. (2010). Fossil spiders. Biological Reviews of the Cambridge Philosophical Society 85, 171–206.
Fossil spiders.Crossref | GoogleScholarGoogle Scholar | 19961468PubMed |

Sharma, P. P., and Wheeler, W. C. (2013). Revenant clades in historical biogeography: the geology of New Zealand predisposes endemic clades to root age shifts. Journal of Biogeography , .
Revenant clades in historical biogeography: the geology of New Zealand predisposes endemic clades to root age shifts.Crossref | GoogleScholarGoogle Scholar |

Sirvid, P. J., Zhang, Z.-Q., Harvey, M. S., Rhode, B. E., Cook, D. R., Bartsch, I., and Staples, D. A. (2010). Phylum Arthropoda – Chelicerata – horseshoe crabs, arachnids, sea spiders. Chapter 6. In ‘New Zealand Inventory of Biodiversity’, Vol. 2. (Ed. D. P. Gordon.) pp. 50–89. (Canterbury University Press: Christchurch, New Zealand.)

Spagna, J. C., and Gillespie, R. G. (2008). More data, fewer shifts: molecular insights into the evolution of the spinning apparatus in non-orb-weaving spiders. Molecular Phylogenetics and Evolution 46, 347–368.
More data, fewer shifts: molecular insights into the evolution of the spinning apparatus in non-orb-weaving spiders.Crossref | GoogleScholarGoogle Scholar | 17928240PubMed |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony method. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=fd9be04d282e64e6ed94338c1130bc17CAS | 21546353PubMed |

Urquhart, A. T. (1885). On the spiders of New Zealand. Transactions and Proceedings of the New Zealand Institute 17, 31–53.

Urquhart, A. T. (1887). On new species of Araneida. Transactions and Proceedings of the New Zealand Institute 19, 72–118.

Urquhart, A.T. (1893). Descriptions of new species of Araneae. Transactions and Proceedings of the New Zealand Institute 25, 165–190.

Vink, C. J. (2002). Lycosidae (Arachnida: Araneae). Fauna of New Zealand 44, 1–94.

Vink, C. J., and Dupérré, N. (2010). Pisauridae (Arachnida: Araneae). Fauna of New Zealand 64, 1–60.

Vink, C. J., and Paterson, A. M. (2003). Combined molecular and morphological phylogenetic analyses of the New Zealand wolf spider genus Anoteropsis (Araneae: Lycosidae). Molecular Phylogenetics and Evolution 28, 576–587.
Combined molecular and morphological phylogenetic analyses of the New Zealand wolf spider genus Anoteropsis (Araneae: Lycosidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1egtro%3D&md5=4e658c0247d28a8e5b3c708920c628eeCAS | 12927140PubMed |

Vink, C. J., Thomas, S. M., Paquin, P., Hayashi, C. Y., and Hedin, M. (2005). The effects of preservatives and temperatures on arachnid DNA. Invertebrate Systematics 19, 99–104.
The effects of preservatives and temperatures on arachnid DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1SlsL8%3D&md5=c4db61f2ac1431cf6758b64a1595cbfbCAS |

Vink, C. J., Sirvid, P. J., Malumbres-Olarte, J., Griffiths, J. W., Paquin, P., and Paterson, A. M. (2008). Species status and conservation issues of New Zealand’s endemic Latrodectus spider species (Araneae: Theridiidae). Invertebrate Systematics 22, 589–604.
Species status and conservation issues of New Zealand’s endemic Latrodectus spider species (Araneae: Theridiidae).Crossref | GoogleScholarGoogle Scholar |

Vink, C. J., Dupérré, N., and McQuillan, B. M. (2011a). The black-headed jumping spider, Trite planiceps Simon, 1899 (Araneae: Salticidae): redescription including cytochrome c oxidase subunit 1 and paralogous 28S sequences. New Zealand Journal of Zoology 38, 317–331.
The black-headed jumping spider, Trite planiceps Simon, 1899 (Araneae: Salticidae): redescription including cytochrome c oxidase subunit 1 and paralogous 28S sequences.Crossref | GoogleScholarGoogle Scholar |

Vink, C. J., Fitzgerald, B. M., Sirvid, P. J., and Dupérré, N. (2011b). Reuniting males and females: redescriptions of Nuisiana arboris (Marples 1959) and Cambridgea reinga Forster & Wilton 1973 (Araneae: Desidae and Stiphidiidae). Zootaxa 2739, 41–50.

Vink, C. J., Mitchell, A. D., and Paterson, A. M. (2002). A preliminary molecular analysis of phylogenetic relationships of Australasian wolf spider genera (Araneae, Lycosidae). Journal of. Arachnology 30, 227–237.