Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Stable phylogenetic patterns in scutigeromorph centipedes (Myriapoda : Chilopoda : Scutigeromorpha): dating the diversification of an ancient lineage of terrestrial arthropods

Gonzalo Giribet A and Gregory D. Edgecombe B
+ Author Affiliations
- Author Affiliations

A Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA. Email: ggiribet@g.harvard.edu

B Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. Email: g.edgecombe@nhm.ac.uk

Invertebrate Systematics 27(5) 485-501 https://doi.org/10.1071/IS13019
Submitted: 14 May 2013  Accepted: 15 June 2013   Published: 31 October 2013

Abstract

Although stable and well-supported relationships are in place for the three main clades (families) of Scutigeromorpha, the interrelationships of particular taxa within the most diverse family, Scutigeridae, are less clearly resolved. Novel molecular data for taxa from Mesoamerica, the Caribbean, southern Africa, New Guinea and previously unsampled parts of the Pacific are incorporated into phylogenetic analyses. Relationships across the tree are stable under variable analytical conditions, whether these are homology-based (multiple sequence alignment versus implied alignment; untrimmed versus trimmed datasets) or method-based (parsimony versus maximum likelihood). Hypervariable regions, contrary to common belief, add phylogenetic structure to the data, as measured by the increased support for many nodes when compared with the same alignments trimmed with Gblocks. Our analyses show that a Yule-3-rate model best explained the diversification of Scutigeromorpha during their 400 million years of history. More complete molecular data for the New Guinea genus Ballonema stabilise its position as sister group to Thereuoneminae. To reconcile scutigeromorph systematics with the phylogeny, the monotypic genus Madagassophora Verhoeff, 1936, is placed in synonymy with Scutigerina Silvestri, 1901 (n. syn.), its type species M. hova becoming Scutigerina hova (de Saussure & Zehntner, 1902) new comb. (from Scutigera), and Lassophora Verhoeff, 1905, is re-established for an Afro-Malagasy clade containing Lassophora nossibei (de Saussure & Zehntner, 1902) new comb. (from Scutigera) and a newly sequenced species from Mozambique that diverged at the base of the lineage to Thereuoneminae. The dated phylogeny of Scutigeromorpha is more consistent with ancient vicariant splits between Madagascar–southern Africa and Australia–New Caledonia than with younger dispersal scenarios, though some geologically young Pacific islands that harbour lineages dating to the Cretaceous demonstrate the potential for trans-oceanic dispersal.

Additional keywords: direct optimization, maximum likelihood, multiple sequence alignment, parsimony, systematics, vicariance biogeography.


References

Alfaro, M. E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D. L., Carnevale, G., and Harmon, L. J. (2009). Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences of the United States of America 106, 13 410–13 414.
Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOitr3J&md5=bf36753400c528c1ed847c074b673f6eCAS |

Ali, J. R., and Huber, M. (2010). Mammalian biodiversity on Madagascar controlled by ocean currents. Nature 463, 653–656.
Mammalian biodiversity on Madagascar controlled by ocean currents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFehtg%3D%3D&md5=ee84aa45b72e82208e542954208a324fCAS | 20090678PubMed |

Ali, J. R., and Krause, D. W. (2011). Late Cretaceous bioconnections between Indo-Madagascar and Antarctica: refutation of the Gunnerus Ridge causeway hypothesis. Journal of Biogeography 38, 1855–1872.
Late Cretaceous bioconnections between Indo-Madagascar and Antarctica: refutation of the Gunnerus Ridge causeway hypothesis.Crossref | GoogleScholarGoogle Scholar |

Anderson, L. I., and Trewin, N. H. (2003). An Early Devonian arthropod fauna from the Windyfield Cherts, Aberdeenshire, Scotland. Palaeontology 46, 467–509.
An Early Devonian arthropod fauna from the Windyfield Cherts, Aberdeenshire, Scotland.Crossref | GoogleScholarGoogle Scholar |

Attems, C. (1928). The Myriapoda of South Africa. Annals of the South African Museum 26, 1–431.

Barry, D., and Hartigan, J. (1987). Statistical analysis of hominoid molecular evolution. Statistical Science 2, 191–207.
Statistical analysis of hominoid molecular evolution.Crossref | GoogleScholarGoogle Scholar |

Butler, A. D., Edgecombe, G. D., Ball, A. D., and Giribet, G. (2010). Resolving the phylogenetic position of enigmatic New Guinea and Seychelles Scutigeromorpha (Chilopoda): a molecular and morphological assessment of Ballonemini. Invertebrate Systematics 24, 539–559.
Resolving the phylogenetic position of enigmatic New Guinea and Seychelles Scutigeromorpha (Chilopoda): a molecular and morphological assessment of Ballonemini.Crossref | GoogleScholarGoogle Scholar |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=4f0bead240a37b4016ad6f96f71b9e01CAS | 10742046PubMed |

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=a1f211acf38e8e6a3a60f2dbde7c52dcCAS | 22847109PubMed |

Derryberry, E. P., Claramunt, S., Derryberry, G., Chesser, R. T., Cracraft, J., Aleixo, A., Perez-Eman, J., Remsen, J. V., and Brumfield, R. T. (2011). Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65, 2973–2986.
Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae).Crossref | GoogleScholarGoogle Scholar | 21967436PubMed |

Drummond, A. J., Ho, S. Y., Phillips, M. J., and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.
Relaxed phylogenetics and dating with confidence.Crossref | GoogleScholarGoogle Scholar | 16683862PubMed |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=ee07da9a65a0870abe0f07bc94aa5909CAS | 22367748PubMed |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=fb309fc886ca0bad32dc0daac67aa1f7CAS | 15034147PubMed |

Edgecombe, G. D. (2011a). Chilopoda – taxonomic overview. Order Scutigeromorpha. In ‘Treatise on Zoology – Anatomy, Taxonomy, Biology. The Myriapoda, Volume 1’. (Ed. A. Minelli.) pp. 363–370. (Brill: Leiden, The Netherlands.)

Edgecombe, G. D. (2011b). Chilopoda – the fossil history. In ‘Treatise on Zoology – Anatomy, Taxonomy, Biology. The Myriapoda, Volume 1’. (Ed. A. Minelli.) pp. 355–361. (Brill: Leiden, The Netherlands.)

Edgecombe, G. D., and Barrow, L. (2007). A new genus of scutigerid centipedes (Chilopoda) from Western Australia, with new characters for morphological phylogenetics of Scutigeromorpha. Zootaxa 1409, 23–50.

Edgecombe, G. D., and Giribet, G. (2006). A century later – a total evidence re-evaluation of the phylogeny of scutigeromorph centipedes (Myriapoda : Chilopoda). Invertebrate Systematics 20, 503–525.
A century later – a total evidence re-evaluation of the phylogeny of scutigeromorph centipedes (Myriapoda : Chilopoda).Crossref | GoogleScholarGoogle Scholar |

Edgecombe, G. D., and Giribet, G. (2009). Phylogenetics of scutigeromorph centipedes (Myriapoda: Chilopoda) with implications for species delimitation and historical biogeography of the Australian and New Caledonian faunas. Cladistics 25, 406–427.
Phylogenetics of scutigeromorph centipedes (Myriapoda: Chilopoda) with implications for species delimitation and historical biogeography of the Australian and New Caledonian faunas.Crossref | GoogleScholarGoogle Scholar |

Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., and Kluge, A. G. (1996). Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99–124.
Parsimony jackknifing outperforms neighbor-joining.Crossref | GoogleScholarGoogle Scholar |

Garwood, R. J., Dunlop, J. A., Giribet, G., and Sutton, M. D. (2011). Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones. Nature Communications 2, 444.
Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones.Crossref | GoogleScholarGoogle Scholar | 21863011PubMed |

Giribet, G. (2005). Generating implied alignments under direct optimization using POY. Cladistics 21, 396–402.
Generating implied alignments under direct optimization using POY.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Shear, W. A. (2010). The genus Siro Latreille, 1796 (Opiliones, Cyphophthalmi, Sironidae), in North America with a phylogenetic analysis based on molecular data and the description of four new species. Bulletin of the Museum of Comparative Zoology 160, 1–33.
The genus Siro Latreille, 1796 (Opiliones, Cyphophthalmi, Sironidae), in North America with a phylogenetic analysis based on molecular data and the description of four new species.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Sharma, P. P., Benavides, L. R., Boyer, S. L., Clouse, R. M., de Bivort, B. L., Dimitrov, D., Kawauchi, G. Y., Murienne, J. Y., and Schwendinger, P. J. (2012). Evolutionary and biogeographical history of an ancient and global group of arachnids (Arachnida: Opiliones: Cyphophthalmi) with a new taxonomic arrangement. Biological Journal of the Linnean Society. Linnean Society of London 105, 92–130.
Evolutionary and biogeographical history of an ancient and global group of arachnids (Arachnida: Opiliones: Cyphophthalmi) with a new taxonomic arrangement.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A. (1999). Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15, 415–428.
Analyzing large data sets in reasonable times: solutions for composite optima.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A. (2002). Techniques for analyzing large data sets. In ‘Techniques in Molecular Systematics and Evolution’. (Eds R. DeSalle, G. Giribet and W. Wheeler.) pp. 70–79. (Brikhäuser Verlag: Basel.)

Grandcolas, P., Murienne, J., Robillard, T., DeSutter-Grandcolas, L., Jourdan, H., and Guilbert, E. (2008). New Caledonia: a very old Darwinian island? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363, 3309–3317.
New Caledonia: a very old Darwinian island?Crossref | GoogleScholarGoogle Scholar | 18765357PubMed |

Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., and Challenger, W. (2008). GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131.
GEIGER: investigating evolutionary radiations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKiuw%3D%3D&md5=2a8008e3118087cfe53795e622406897CAS | 18006550PubMed |

Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFSns7g%3D&md5=170eda66ea250b135b343913ad585785CAS | 3934395PubMed |

Hillis, D. M. (1997). Phylogenetic analysis. Current Biology 7, R129–R131.
Phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFarsL4%3D&md5=e10527990e6aa6f88e0106a8f902d4adCAS | 9162471PubMed |

Katoh, K., Kuma, K., Toh, H., and Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33, 511–518.
MAFFT version 5: improvement in accuracy of multiple sequence alignment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2qsbc%3D&md5=661202f94fd33eed65a628fdb9340ac7CAS | 15661851PubMed |

Kjer, K. M., Gillespie, J. J., and Ober, K. A. (2007). Opinions on multiple sequence alignment, and an empirical comparison of repeatability and accuracy between POY and structural alignment. Systematic Biology 56, 133–146.
Opinions on multiple sequence alignment, and an empirical comparison of repeatability and accuracy between POY and structural alignment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVenurnM&md5=f8f63efdce35abffe2c14cee270a51daCAS | 17366144PubMed |

Koch, M., and Edgecombe, G. D. (2006). Peristomatic structures in Scutigeromorpha (Chilopoda): a comparative study, with new characters for higher-level systematics. Zoomorphology 125, 187–207.
Peristomatic structures in Scutigeromorpha (Chilopoda): a comparative study, with new characters for higher-level systematics.Crossref | GoogleScholarGoogle Scholar |

Ladiges, P. Y., and Cantrill, D. (2007). New Caledonia-Australian connections: biogeographic patterns and geology. Australian Systematic Botany 20, 383–389.
New Caledonia-Australian connections: biogeographic patterns and geology.Crossref | GoogleScholarGoogle Scholar |

Lawrence, R. F. (1955). Chilopoda. In ‘South Africa-Animal Life II’. (Ed. B. Hanström., P. Brinck, G. Rudebeck.) pp. 4–56. (Almqvist & Wiksell: Stockholm, Sweden.)

Lawrence, R. F. (1960). ‘Faune de Madagascar XII. Myriapodes Chilopodes.’ (Publications de l’Institut de Recherche Scientifique: Tananarive, Madagascar.)

Lindgren, A. R., and Daly, M. (2007). The impact of length-variable data and alignment criterion on the phylogeny of Decapodiformes (Mollusca: Cephalopoda). Cladistics 23, 464–476.
The impact of length-variable data and alignment criterion on the phylogeny of Decapodiformes (Mollusca: Cephalopoda).Crossref | GoogleScholarGoogle Scholar |

Linton, E. W. (2005). MacGDE: Genetic Data Environment for MacOS X. Available at http://www.msu.edu/~lintone/macgde/ [verified 3 August 2013]

Liu, K., and Warnow, T. (2012). Treelength optimization for phylogeny estimation. PLoS ONE 7, e33104.
Treelength optimization for phylogeny estimation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVers7k%3D&md5=83adddb2cd99255fe82210bc08d39590CAS | 22442677PubMed |

Martill, D. M., Bechly, G., and Loveridge, R. F. (Eds) (2007). ‘The Crato Fossil Beds of Brazil: Window into an Ancient World.’ (Cambridge University Press: Cambridge.)

Mathers, T. C., Hammond, R. L., Jenner, R. A., Hänfling, B., and Gómez, A. (2013). Multiple global radiations in tadpole shrimps challenge the concept of ‘living fossils’. PeerJ 1, e62.
Multiple global radiations in tadpole shrimps challenge the concept of ‘living fossils’.Crossref | GoogleScholarGoogle Scholar | 23638400PubMed |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. Gateway Computing Environments Workshop (GCE), 2010. pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129

Morrison, D. A., and Ellis, J. T. (1997). Effects of nucleotide sequence alignment on phylogeny estimation: a case study of 18S rDNAs of Apicomplexa. Molecular Biology and Evolution 14, 428–441.
Effects of nucleotide sequence alignment on phylogeny estimation: a case study of 18S rDNAs of Apicomplexa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitlOhtLY%3D&md5=9d2892a6e595bc983adc52ef5157dddcCAS | 9100373PubMed |

Murienne, J. (2009). Testing biodiversity hypotheses in New Caledonia using phylogenetics. Journal of Biogeography 36, 1433–1434.
Testing biodiversity hypotheses in New Caledonia using phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Murienne, J., Edgecombe, G. D., and Giribet, G. (2010). Including secondary structure, fossils and molecular dating in the centipede tree of life. Molecular Phylogenetics and Evolution 57, 301–313.
Including secondary structure, fossils and molecular dating in the centipede tree of life.Crossref | GoogleScholarGoogle Scholar | 20601003PubMed |

Nixon, K. C. (1999). The Parsimony Ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407–414.
The Parsimony Ratchet, a new method for rapid parsimony analysis.Crossref | GoogleScholarGoogle Scholar |

Notredame, C., Higgins, D. G., and Heringa, J. (2000). T-Coffee: a novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302, 205–217.
T-Coffee: a novel method for fast and accurate multiple sequence alignment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVGntr8%3D&md5=25887e3ec7d8c4e00a62d0271986086cCAS | 10964570PubMed |

Parry, S. F., Noble, S. R., Crowley, Q. G., and Wellman, C. H. (2011). A high-precision U-Pb age constraint on the Rhynie Chert Konservat-Lagerstätte: time scale and other implications. Journal of the Geological Society 168, 863–872.
A high-precision U-Pb age constraint on the Rhynie Chert Konservat-Lagerstätte: time scale and other implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVGgurg%3D&md5=7da726db97782e6f4831dd7ed03c36f9CAS |

Pepato, A. R., da Rocha, C. E., and Dunlop, J. A. (2010). Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. BMC Evolutionary Biology 10, 235.
Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence.Crossref | GoogleScholarGoogle Scholar | 20678229PubMed |

Posada, D., and Buckley, T. (2004). Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793–808.
Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests.Crossref | GoogleScholarGoogle Scholar | 15545256PubMed |

Rabosky, D. L. (2006). LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evolutionary Bioinformatics 2, 247–250.

Rabosky, D. L., and Lovette, I. J. (2008). Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62, 1866–1875.
Explosive evolutionary radiations: decreasing speciation or increasing extinction through time?Crossref | GoogleScholarGoogle Scholar | 18452577PubMed |

Rabosky, D. L., Slater, G. J., and Alfaro, M. E. (2012). Clade age and species richness are decoupled across the eukaryotic Tree of Life. PLoS Biology 10, e1001381.
Clade age and species richness are decoupled across the eukaryotic Tree of Life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Oqsb%2FP&md5=6db0bae9ee2e9a73ee839c79db16b3e2CAS | 22969411PubMed |

Rambaut, A., and Drummond, A. J. (2002–2010). TreeAnnotator v1.6.1: MCMC output analysis. Available at http://beast.bio.ed.ac.uk/TreeAnnotator [verified 3 August 2013]

Rambaut, A., and Drummond, A. J. (2003–2009). Tracer: MCMC trace analysis tool. Version v1.5.0. Available from the BEAST site: http://beast.bio.ed.ac.uk/ [verified 3 August 2013]

Scotese, C. R. (2004). A continental drift flipbook. The Journal of Geology 112, 729–741.
A continental drift flipbook.Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., and Giribet, G. (2012). Out of the Neotropics: Late Cretaceous colonization of Australasia by American arthropods. Proceedings. Biological Sciences 279, 3501–3509.
Out of the Neotropics: Late Cretaceous colonization of Australasia by American arthropods.Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., Zardus, J. D., Boyle, E. E., González, V. L., Jennings, R. M., McIntyre, E., Wheeler, W. C., Etter, R. J., and Giribet, G. (2013). Into the deep: a phylogenetic approach to the bivalve subclass Protobranchia. Molecular Phylogenetics and Evolution , .
Into the deep: a phylogenetic approach to the bivalve subclass Protobranchia.Crossref | GoogleScholarGoogle Scholar | 23742885PubMed |

Shear, W. A., and Edgecombe, G. D. (2010). The geological record and phylogeny of Myriapoda. Arthropod Structure & Development 39, 174–190.
The geological record and phylogeny of Myriapoda.Crossref | GoogleScholarGoogle Scholar |

Shear, W. A., Jeram, A. J., and Selden, P. A. (1998). Centipede legs (Arthropoda, Chilopoda, Scutigeromorpha) from the Silurian and Devonian of Britain and the Devonian of North America. American Museum Novitates 3231, 1–16.

Simmons, M. P. (2004). Independence of alignment and tree search. Molecular Phylogenetics and Evolution 31, 874–879.
Independence of alignment and tree search.Crossref | GoogleScholarGoogle Scholar | 15120385PubMed |

Stamatakis, A., Hoover, P., and Rougemont, J. (2008a). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758–771.
A rapid bootstrap algorithm for the RAxML web servers.Crossref | GoogleScholarGoogle Scholar | 18853362PubMed |

Stamatakis, A. P., Meier, H., and Ludwig, T. (2008b). RAxML: a parallel program for phylogenetic tree inference.

Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKrs7%2FP&md5=cf42dd658058571a9f75068685dd5dbcCAS | 17654362PubMed |

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |

Varón, A., Lucaroni, N., Hong, L., and Wheeler, W. C. (2012). POY 5.0.0. American Museum of Natural History, New York. Available at: http://research.amnh.org/scicomp [verified 3 August 2013]

Wheeler, W. C. (1995). Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology 44, 321–331.

Wheeler, W. (1996). Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12, 1–9.
Optimization alignment: the end of multiple sequence alignment in phylogenetics?Crossref | GoogleScholarGoogle Scholar |

Wheeler, W. C. (2003). Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search. Cladistics 19, 261–268.
Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search.Crossref | GoogleScholarGoogle Scholar | 12901383PubMed |

Wheeler, W. C. (2006). Dynamic homology and the likelihood criterion. Cladistics 22, 157–170.
Dynamic homology and the likelihood criterion.Crossref | GoogleScholarGoogle Scholar |

Whiting, M. F., Carpenter, J. M., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
| 1:STN:280:DC%2BD383js1yqtQ%3D%3D&md5=a9245cf9f037d3c680ee93e07e809a2dCAS | 11975347PubMed |

Whiting, A. S., Sites, J. W., Pellegrino, K. C., and Rodrigues, M. T. (2006). Comparing alignment methods for inferring the history of the new world lizard genus Mabuya (Squamata: Scincidae). Molecular Phylogenetics and Evolution 38, 719–730.
Comparing alignment methods for inferring the history of the new world lizard genus Mabuya (Squamata: Scincidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVWnsb4%3D&md5=b029626ba3a1263020c0613a45449ad9CAS | 16364664PubMed |

Wilson, H. M. (2001). First Mesozoic scutigeromorph centipede, from the Lower Cretaceous of Brazil. Palaeontology 44, 489–495.
First Mesozoic scutigeromorph centipede, from the Lower Cretaceous of Brazil.Crossref | GoogleScholarGoogle Scholar |

Wilson, H. W. (2005). Zosterogrammida, a new order of millipedes from the Middle Silurian of Scotland and the Upper Carboniferous of Euramerica. Palaeontology 48, 1101–1110.

Wilson, H. M., and Anderson, L. I. (2004). Morphology and taxonomy of Paleozoic millipedes (Diplopoda: Chilognatha: Archipolypoda) from Scotland. Journal of Paleontology 78, 169–184.
Morphology and taxonomy of Paleozoic millipedes (Diplopoda: Chilognatha: Archipolypoda) from Scotland.Crossref | GoogleScholarGoogle Scholar |

Würmli, M. (1973a). Die Scutigeromorpha (Chilopoda) von Costa Rica. Ueber Dendrothereua arborum Verhoeff, 1944. Studies on Neotropical Fauna 8, 75–80.
Die Scutigeromorpha (Chilopoda) von Costa Rica. Ueber Dendrothereua arborum Verhoeff, 1944.Crossref | GoogleScholarGoogle Scholar |

Würmli, M. (1973b). Zur Systematik der Scutigeriden Europas und Kleinasiens (Chilopoda: Scutigeromorpha). Annalen des Naturhistorisches Museums in Wien 77, 399–408.

Würmli, M. (1975). Scutigeromorpha von Madagaskar. Die Identität von Lassophora madagascariensis Verhoeff, 1905. Bollettino della Societa Entomologica Italiana 107, 70–74.