Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

An optimised protocol for barcoding museum collections of decapod crustaceans: a case-study for a 10–40-years-old collection

Dario Zuccon A C , Julien Brisset A , Laure Corbari B , Nicolas Puillandre B , José Utge A and Sarah Samadi A B
+ Author Affiliations
- Author Affiliations

A Service de systématique moléculaire (CNRS-MNHN, UMS2700), Département Systématique et Evolution, Muséum national d’Histoire naturelle, CP 26, 57 Rue Cuvier, F-75231 Paris Cedex 05, France.

B ‘Systématique, Adaptation et Evolution’, UMR 7138 UPMC-IRD-MNHN-CNRS (UR IRD 148), Département Systématique et Evolution, Muséum national d’Histoire naturelle, CP 26, 57 Rue Cuvier, F-75231 Paris Cedex 05, France.

C Corresponding author. Email: dario.zuccon@mnhn.fr

Invertebrate Systematics 26(6) 592-600 https://doi.org/10.1071/IS12027
Submitted: 17 April 2012  Accepted: 26 September 2012   Published: 19 December 2012

Abstract

The sequencing of the crustacean collection of the MNHN, Paris, constitutes a promising yet very challenging barcoding project. For the collection’s crustacean specimens preserved in ethanol, some of which were collected up to 40 years ago, the conventional COI barcoding procedure of amplification with Folmer primers failed for more than half of the specimens (58%, n = 1920). We hypothesised that this failure may have been due to incompatible mismatches between the crustaceans targeted and the Folmer primer sequences and/or the amount of degradation of the DNA extracted from museum specimens. The comparison of the Folmer primers against the COI sequences from GenBank complete decapod mitochondrial genomes revealed that the annealing regions were, in fact, rather conserved, suggesting that the amplification failures were due more likely to the low quality of the DNA isolated. Using an alignment of all available decapod sequences we designed two internal primers in the middle of the barcoding COI region and also selected two additional external primers to be used as alternative to the standard Folmer primers. Using a two-overlapping-fragments amplification strategy and different primer combinations, our new protocol significantly increased the amplification success rate of the collection material from 42% with the Folmer primers to 84%, recovering an additional 364 complete barcodes and 443 minibarcodes (i.e. fragments of less than 400 base pairs), and expanding the species coverage from 254 to 397 barcoded crustaceans.


References

Bouchet, P., Héros, V., Lozouet, P., and Maestrati, P. (2008). A quater-century of deep-sea malacological exploration in the South and West Pacific: Where do we stand? How far to go? In ‘Tropical Deep-Sea Benthos 25’. Mémoires du Muséum national d’Histoire naturelle 196, 9–40. (Eds V. Héros, R.H. Cowie and P. Bouchet.) (Paris.)

Bucklin, A., Steinke, D., and Blanco-Bercial, L. (2011). DNA barcoding of marine metazoa. Annual Review of Marine Science 3, 471–508.
DNA barcoding of marine metazoa.Crossref | GoogleScholarGoogle Scholar |

Castro, P. (2010). A new species and new records of palicoid crabs (Crustacea, Decapoda, Brachyura, Palicoidea, Palicidae, Crossotonotidae) from the Indo-West Pacific region. Zoosystema 32, 73–86.
A new species and new records of palicoid crabs (Crustacea, Decapoda, Brachyura, Palicoidea, Palicidae, Crossotonotidae) from the Indo-West Pacific region.Crossref | GoogleScholarGoogle Scholar |

Chan, T. Y. (2004). The “Plesionika rostricrescentis (Bate, 1888)” and “P. lophotes Chace, 1985” species groups of Plesionika Bate, 1888, with descriptions of five new species (Crustacea: Decapoda: Pandalidae). In ‘Tropical Deep-Sea Benthos 23’. (Eds B. Marshall, and B. Richer de Forges.) Mémoires du Muséum national d’Histoire naturelle 191, 293–318, fig. 291–217.

Chan, T. Y. (in press). A new genus of deep-sea solenocerid shrimp (Crustacea: Decapoda: Penaeoidea) from the Papua New Guinea. Journal of Crustacean Biology , .

Chan, T. Y., and Crosnier, A. (1997). Crustacea Decapoda: deep-sea shrimps of the genus Plesionika Bate, 1888 (Pandalidae) from French Polynesia, with descriptions of five new species. In ‘Résultats des campagnes MUSORSTOM 18’. (Ed. A. Crosnier.) Mémoires du Muséum national d’Histoire naturelle, Paris (A) 176, 187–234, fig. 181–141.

Crosnier, A. (1986). Plesionika fenneri, nouveau nom pour Plesionika chacei Crosnier, 1986. Bulletin du Muséum national d’Histoire naturelle, Paris, 4ème série (A) 8, 691.

De Grave, S., Pentcheff, N. D., Ahyong, S. T., Chan, T.-Y., Crandall, K. A., Dworschak, P. C., Felder, D. L., Feldmann, R. M., Fransen, C. H. J. M., Goulding, L. Y. D., Lemaitre, R., Low, M. E. Y., Martin, J. W., Ng, P. K. L., Schweitzer, C. E., Tan, S. H., Tshudy, D., and Wetzer, R. (2009). A classification of living and fossil genera of decapod crustaceans. The Raffles Bulletin of Zoology 21, 1–109.

Dean, M. D., and Ballard, J. W. (2001). Factors affecting mitochondrial DNA quality from museum preserved Drosophila simulans. Entomologia Experimentalis et Applicata 98, 279–283.
Factors affecting mitochondrial DNA quality from museum preserved Drosophila simulans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFyitrk%3D&md5=2743a35731042e0ec893cba422f6296fCAS |

Filipová, L., Grandjean, F., Chucholl, C., Soes, D. M., and Petrusek, A. (2011). Identification of exotic North American crayfish in Europe by DNA barcoding. Knowledge and Management of Aquatic Ecosystems 401, 11.
Identification of exotic North American crayfish in Europe by DNA barcoding.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=0a6e1d841a9ef8fafdf936427c59141bCAS |

Hajibabaei, M., Smith, A. M., Janzen, D. H., Rodriguez, J. J., Whitfield, J. B., and Hebert, P. D. N. (2006). A minimalist barcode can identify a specimen whose DNA is degraded. Molecular Ecology Notes 6, 959–964.
A minimalist barcode can identify a specimen whose DNA is degraded.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsl2lug%3D%3D&md5=6ec77f50e9fe36a039d2cc160f4e2e1fCAS |

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=08d747d827542961412adcc224832fc5CAS |

Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., and Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biology 2, e312.
Identification of birds through DNA barcodes.Crossref | GoogleScholarGoogle Scholar |

Holthuis, L. B. (1980). F.A.O. species catalogue. I. Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. FAO Fisheries Synopsis 125 (I), 271 pp.

Housley, D. J. E., Zalewski, Z. A., Beckett, S. E., and Venta, P. J. (2006). Design factors that influence PCR amplification success of cross-species primers among 1147 mammalian primer pairs. BMC Genomics 7, 253.
Design factors that influence PCR amplification success of cross-species primers among 1147 mammalian primer pairs.Crossref | GoogleScholarGoogle Scholar |

Komai, T. (2011). Further records of deep-sea shrimps of the genus Glyphocrangon (Crustacea: Decapoda: Caridea: Glyphocrangonidae) from the southwestern Pacific, with descriptions of two new species. Species Diversity 16, 113–135.

Lee, P. L. M., and Prys-Jones, R. P. (2007). Extracting DNA from museum bird eggs, and whole genome amplification of archive DNA. Molecular Ecology Notes 8, 551–560.

Mandrioli, M., Borsatti, F., and Mola, L. (2006). Factors affecting DNA preservation from museum-collected lepidopteran specimens. Entomologia Experimentalis et Applicata 120, 239–244.
Factors affecting DNA preservation from museum-collected lepidopteran specimens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2rtr%2FP&md5=a7aa2360cb1782579d22e69843b4d646CAS |

Martínková, N., and Searle, J. B. (2006). Amplification success rate of DNA from museum skin collections: a case study of stoats from 18 museums. Molecular Ecology Notes 6, 1014–1017.
Amplification success rate of DNA from museum skin collections: a case study of stoats from 18 museums.Crossref | GoogleScholarGoogle Scholar |

Matzen da Silva, J., Creer, S., dos Santos, A., Costa, A. C., Cunha, M. R., Costa, F. O., and Carvalho, G. R. (2011). Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca). PLoS ONE 6, e19449.
Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlKlurs%3D&md5=298d72ae31b7222a14f917aa733b988eCAS |

Meusnier, I., Singer, G., Landry, J.-F., Hickey, D., Hebert, P., and Hajibabaei, M. (2008). A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9, 214.
A universal DNA mini-barcode for biodiversity analysis.Crossref | GoogleScholarGoogle Scholar |

Puillandre, N., Macpherson, E., Lambourdière, J., Cruaud, C., Boisselier-Dubayle, M.-C., and Samadi, S. (2011). Barcoding type specimens helps to identify synonyms and an unnamed new species in Eumunida Smith, 1883 (Decapoda: Eumunididae). Invertebrate Systematics 25, 322–333.
Barcoding type specimens helps to identify synonyms and an unnamed new species in Eumunida Smith, 1883 (Decapoda: Eumunididae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Gru7bI&md5=50a56d75c32f9502c986e57dea732c36CAS |

Puillandre, N., Bouchet, P., Boisselier-Dubayle, M.-C., Brisset, J., Buge, B., Castelin, M., Chagnoux, S., Christophe, T., Corbari, L., Lambourdière, J., Lozouet, P., Marani, G., Rivasseau, A., Silva, N., Terryn, Y., Tillier, S., Utge, J., and Samadi, S. (2012). The MarBOL workflow in the MNHN: tracking specimens from the field to the publication. Molecular Ecology Resources 12, 396–402.
The MarBOL workflow in the MNHN: tracking specimens from the field to the publication.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38zpvVeksw%3D%3D&md5=a4d0a0228aa671337dc4e35ae3134633CAS |

Radulovici, A. E., Sainte-Marie, B., and Dufresne, F. (2009). DNA barcoding of marine crustaceans from the Estuary and Gulf of St Lawrence: a regional-scale approach. Molecular Ecology Resources 9, 181–187.
DNA barcoding of marine crustaceans from the Estuary and Gulf of St Lawrence: a regional-scale approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslOjtrs%3D&md5=46e77ca2e6e692b0e7ab05323b022058CAS |

Swofford, D. L. (2003). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.’ (Sinauer Associates: Sunderland, MA.)

Van Houdt, J. K. J., Breman, F. C., Virgilio, M., and De Meyer, M. (2010). Recovering full DNA barcodes from natural history collections of tephritid fruitflies (Tephritidae, Diptera) using mini barcodes. Molecular Ecology Resources 10, 459–465.
Recovering full DNA barcodes from natural history collections of tephritid fruitflies (Tephritidae, Diptera) using mini barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1amtbY%3D&md5=d0c5b49933d52e1f07c7ec6b23cf6d5bCAS |

Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., and Hebert, P. D. N. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 1847–1857.
DNA barcoding Australia’s fish species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrjK&md5=ec74be10b2d9d122ee3aaa9703b7defcCAS |

Zimmermann, J., Hajibabaei, M., Blackburn, D., Hanken, J., Cantin, E., Posfai, J., and Evans, T. C. (2008). DNA damage in preserved specimens and tissue samples: a molecular assessment. Frontiers in Zoology 5, 18.
DNA damage in preserved specimens and tissue samples: a molecular assessment.Crossref | GoogleScholarGoogle Scholar |

Zuccon, A., and Zuccon, D. (2010). MrEnt v.2.2. Program distributed by the authors. Available at http://www.mrent.org