Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Molecular identification supports most traditional morphological species of Ruspolia (Orthoptera : Conocephalinae)

Zhi Jun Zhou A B , Rui Lian Li A , Da Wei Huang A and Fu Ming Shi A
+ Author Affiliations
- Author Affiliations

A College of Life Sciences, Hebei University, Baoding, Hebei 071002, China.

B Corresponding author. Email: zhijunzhou@163.com

Invertebrate Systematics 26(6) 451-456 https://doi.org/10.1071/IS12019
Submitted: 2 April 2012  Accepted: 13 September 2012   Published: 19 December 2012

Abstract

Molecular identification systems depend on genetic diversity based on a short mitochondrial DNA fragment being markedly lower within than between species to infer identification of specimens. Our analyses show that both COI and CytB fragments can successfully distinguish most Ruspolia species. R. jezoensis was synonymised with R. dubia, and R. liangshanensis may be recently separated from R. dubia. R. indica, often called Euconocephalus indicus, occupied a well supported position within Ruspolia, and should be transferred into Ruspolia. The individuals of R. lineosa from Yunnan formed a monophyletic group at the base of the R. lineosa clade, and the Kimura 2-parameter distance between it and other R. lineosa individuals was 0.065 for COI and 0.069 for CytB, which may be the result of isolated or remote populations. However, for recently diverged taxa R. liangshanensis and R. dubia, straightforward application of barcoding rules may prove problematic without morphological, behavioural or ecological data.

Additional keywords: China, COI, CytB, DNA barcoding, molecular taxonomy, mtDNA.


References

Burland, T. G. (2000). DNASTAR’s Lasergene sequence analysis software. Methods in Molecular Biology (Clifton, N.J.) 132, 71–91.
| 1:CAS:528:DyaK1MXmslKqsL4%3D&md5=bc7a951964150fede23d3806ad0c188bCAS |

Croucher, P. J. P., Oxford, G. S., and Searle, J. B. (2004). Mitochondrial differentiation, introgression and phylogeny of species in the Tegenaria atrica group (Araneae: Agelenidae). Biological Journal of the Linnean Society. Linnean Society of London 81, 79–89.
Mitochondrial differentiation, introgression and phylogeny of species in the Tegenaria atrica group (Araneae: Agelenidae).Crossref | GoogleScholarGoogle Scholar |

Eades, D. C., Otte, D., Cigliano, M. M., and Braun, H. (2012). Orthoptera Species File. Version 2.0/4.1. [2012-2-3]. Available at http://Orthoptera.SpeciesFile.org [Verifed November 2012].

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=0a6e1d841a9ef8fafdf936427c59141bCAS |

Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachs, W., and Hebert, P. D. N. (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 103, 968–971.
DNA barcodes distinguish species of tropical Lepidoptera.Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003a). Biological identifications through DNA barcodes. Proceedings. Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=bacde07336013937477a1e8839a85156CAS |

Hebert, P. D. N., Ratnasingham, S., and deWaard, J. R. (2003b). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings. Biological Sciences 270, S96–S99.
Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Smsbo%3D&md5=f8aa7a07473adc3c030b9d330ed5a0afCAS |

Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., and Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biology 2, e312.
Identification of birds through DNA barcodes.Crossref | GoogleScholarGoogle Scholar |

Ichikawa, A., Kano, Y., Kawai, M., Tominago, O., and Murai, T. (2006). ‘Orthoptera of the Japanese Archipelago in Color.’ (Hokkaido University Press: Hokkaido, Japan.)

Karny, H. H. (1912). Orthoptera fam. Locustidae subfam. Copiphorinae. In ‘Genera Insectorum’. (Ed. P. Wytaman.) Vol. 139, pp. 1–50, plates 1–7. (V. Verteneuil & L. Desmet Press: Bruxelles.)

Kim, T. W., and Puskás, G. (2012). Check-list of North Korean Orthoptera based on the specimens deposited in the Hungarian Natural History Museum. Zootaxa 3202, 1–27.

Lian, Z. M., and Liu, X. W. (1992). Two new species of the genus Ruspolia from China (Orthoptera: Tettigonioidea, Conocephalidae). Journal Shaanxi Normal University 20, 62–64.

Linares, M. C., Soto-Calderón, I., Lees, D. C., and Anthony, N. M. (2009). High mitochondrial diversity in geographically widespread butterflies of Madagascar: a test of the DNA barcoding approach. Molecular Phylogenetics and Evolution 50, 485–495.
High mitochondrial diversity in geographically widespread butterflies of Madagascar: a test of the DNA barcoding approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitF2qsbs%3D&md5=8f79af87cd49e054c83cb00cb1f78bfcCAS |

Meyer, C. P., and Paulay, G. (2005). DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3, e422.
DNA barcoding: error rates based on comprehensive sampling.Crossref | GoogleScholarGoogle Scholar |

Redtenbacher, J. (1891). Monographie der Conocephaliden. Verhandlungen Der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft In Wien 41, 315–563.

Remigio, E. A., and Hebert, P. D. N. (2003). Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Molecular Phylogenetics and Evolution 29, 641–647.
Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVWnu7w%3D&md5=9252efe6ca68fd874e11be9b5927817bCAS |

Simon, C., Buckley, T. R., Frati, F., Stewart, J. B., and Beckenbach, A. T. (2006). Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics 37, 545–579.
Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Storozhenko, S. Y. (2004). ‘Long-horned Orthopterans (Orthoptera: Ensifera) of the Asiatic Part of Russia.’ (Dalnauka Publ.: Vladivostok.)

Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599.
MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGrsL8%3D&md5=d2738b052fcd210827e9d4fc638cc7d5CAS |

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFyntQ%3D%3D&md5=7634ff92091e34d81ff1696f63bf889cCAS |

Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., and Hebert, P. D. N. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B – Biological Sciences 360, 1847–1857.
DNA barcoding Australia’s fish species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrjK&md5=ec74be10b2d9d122ee3aaa9703b7defcCAS |

Whitworth, T. L., Dawson, R. D., Magalon, H., and Baudry, E. (2007). DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proceedings. Biological Sciences 274, 1731–1739.
DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVans7k%3D&md5=78b3201e91b8dfa011fecf87056696bcCAS |

Wiens, J. J., and Penkrot, T. L. (2002). Delimiting species based on DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Systematic Biology 51, 69–91.
Delimiting species based on DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus).Crossref | GoogleScholarGoogle Scholar |

Zhou, Z., Huang, Y., and Shi, F. (2007). The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T-rich region of 70 bp in length. Genome 50, 855–866.
The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T-rich region of 70 bp in length.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlekt7%2FK&md5=5f82cae381bd1e3dd8f6c57a5ed719b9CAS |

Žurovcova, M., Havelka, J., Stary, P., Vechtova, P., Chundelova, D., Jarasova, A., and Kucerova, L. (2010). “DNA barcoding” is of limited value for identifying adelgids (Hemiptera: Adelgidae) but supports traditional morphological taxonomy. European Journal of Entomology 107, 147–156.