Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Genes, morphology, development and photosynthetic ability support the resurrection of Elysia cornigera (Heterobranchia : Plakobranchoidea) as distinct from the ‘solar-powered’ sea slug, E. timida

Patrick J. Krug A C , Katharina Händeler B and Jann Vendetti A
+ Author Affiliations
- Author Affiliations

A Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, USA.

B Institut für Molekulare Evolution, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.

C Corresponding author. Email: pkrug@calstatela.edu

Invertebrate Systematics 25(6) 477-489 https://doi.org/10.1071/IS11026
Submitted: 10 June 2011  Accepted: 4 December 2011   Published: 7 May 2012

Abstract

Some groups of marine heterobranch sea slugs (formerly Opisthobranchia) have few discrete characters or hard parts and many ‘cosmopolitan’ species, suggesting an overly conservative taxonomy in need of integrative approaches. Many herbivorous sea slugs in the clade Sacoglossa retain algal chloroplasts that remain functionally photosynthetic for 1–2 weeks, but at least four species can sustain chloroplasts for several months. To better understand the origins of long-term kleptoplasty, we performed an integrative study of the highly photosynthetic species Elysia timida from the Mediterranean and Caribbean populations that were described as E. cornigera but later synonymised with E. timida. Nominal E. cornigera were distinct in their anatomy and aspects of larval development, and had dramatically reduced chloroplast retention compared with E. timida. Mean divergence at three genetic loci was determined for ten pairs of sister species in the genus Elysia, confirming that E. cornigera and E. timida have species level differences. Both taxa had a high degree of population genetic subdivision, but among-population genetic distances were far less than interspecific divergence. In an integrative taxonomic framework, E. cornigera is thus restored to species rank and fully redescribed, and baseline molecular data are presented for evaluating species level differences in the Sacoglossa.


References

Bass, A. L. (2004). Elysia cf. timida from the Florida Keys. Sea Slug Forum. Australian Museum, Sydney. http://www.seaslugforum.net/find/12526 [Verified xxx]

Blanc, P.-L. (2002). The opening of the Plio-Quaternary Gibraltar Strait: assessing the size of a cataclysm. Geodinamica Acta 15, 303–317.
The opening of the Plio-Quaternary Gibraltar Strait: assessing the size of a cataclysm.Crossref | GoogleScholarGoogle Scholar |

Blanquer, A., and Uriz, M. J. (2008). ‘A posteriori’ searching for phenotypic characters to describe new cryptic species of sponges revealed by molecular markers (Dictyonellidae: Scopalina). Invertebrate Systematics 22, 489–502.
‘A posteriori’ searching for phenotypic characters to describe new cryptic species of sponges revealed by molecular markers (Dictyonellidae: Scopalina).Crossref | GoogleScholarGoogle Scholar |

Bouchet, P. H. (1984). Les Elysiidae de Méditerranée (Gastropodda, Opisthobranchiata). Annales de l’Institut Océanographique 60, 19–28.

Chia, F.-S. (1971). Oviposition, fecundity, and larval development of three sacoglossan opisthobranchs from the Northumberland coast, England. The Veliger 13, 319–325.

Clark, K. B., and Jensen, K. R. (1981). A comparison of egg size, capsule size, and development patterns in the order Ascoglossa (Sacoglossa) (Mollusca: Opisthobranchia). International Journal of Invertebrate Reproduction 3, 57–64.

Clauzon, G., Suc, J.-P., Gautier, F., Berger, A., and Loutre, M.-F. (1996). Alternate interpretation of the Messinian salinity crisis: controversy resolved? Geology 24, 363–366.
Alternate interpretation of the Messinian salinity crisis: controversy resolved?Crossref | GoogleScholarGoogle Scholar |

Coates, A. G., and Obando, J. A. (1996). The geological evolution of the Central American Isthmus. In ‘Evolution and Environment in Tropical America’. (Eds J. B. C. Jackson, A. F. Budd and A. G. Coates.) pp. 21–56. (University of Chicago Press: Chicago, IL.)

Collin, R. (2005). Development, phylogeny, and taxonomy of Bostrycapulus (Caenogastropoda: Calyptraeidae), an ancient cryptic radiation. Zoological Journal of the Linnean Society 144, 75–101.
Development, phylogeny, and taxonomy of Bostrycapulus (Caenogastropoda: Calyptraeidae), an ancient cryptic radiation.Crossref | GoogleScholarGoogle Scholar |

Cook, L. G., Edwards, R. D., Crisp, M. D., and Hardy, N. B. (2010). Need morphology always be required for new species descriptions? Invertebrate Systematics 24, 322–326.
Need morphology always be required for new species descriptions?Crossref | GoogleScholarGoogle Scholar |

Curtis, N. E., Schwartz, J. A., and Pierce, S. K. (2010). Ultrastructure of sequestered chloroplasts in sacoglossan gastropods with differing abilities for plastid uptake and maintenance. Invertebrate Biology 129, 297–308.
Ultrastructure of sequestered chloroplasts in sacoglossan gastropods with differing abilities for plastid uptake and maintenance.Crossref | GoogleScholarGoogle Scholar |

Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society. Linnean Society of London 85, 407–415.
Towards integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

DeSalle, R., Egan, M. G., and Siddall, M. (2005). The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society of London Series B 360, 1905–1916.
The unholy trinity: taxonomy, species delimitation and DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjsrnE&md5=f8c85670f20b6ef60dd4b6cbf03e6aceCAS |

Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F., and Douzery, E. J. (2003). Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Molecular Biology and Evolution 20, 248–254.
Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVOiur0%3D&md5=60470cf55b1329a73d2eb944ce296acfCAS |

Ellingson, R. A., and Krug, P. J. (2006). Evolution of poecilogony from planktotrophy: cryptic speciation, phylogeography and larval development in the gastropod genus Alderia. Evolution 60, 2293–2310.
| 1:CAS:528:DC%2BD2sXovFyhsg%3D%3D&md5=7331153b4ef89a9a1a31110e195ef004CAS |

Evertsen, J., Burghardt, I., Johnsen, G., and Wägele, H. (2007). Retention of functional chloroplasts in some sacoglossans from the Indo-Pacific and Mediterranean. Marine Biology 151, 2159–2166.
Retention of functional chloroplasts in some sacoglossans from the Indo-Pacific and Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Excoffier, L., Smouse, P., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA 7 restriction data. Genetics 131, 479–491.
| 1:CAS:528:DyaK38XlsVCntro%3D&md5=e4d86c3c5aa2d9579b99bee5dd6e87bcCAS |

Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
| 1:CAS:528:DC%2BD28XjsFSltg%3D%3D&md5=7e711aaeac42eca77bba4112a8dce738CAS |

Garcia-Castellanos, D., Estrada, F., Jiménez-Munt, I., Gorini, C., Fernàndez, M., Vergés, J., and De Vincente, R. (2009). Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462, 778–781.
Catastrophic flood of the Mediterranean after the Messinian salinity crisis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFersrvN&md5=049aa4ff3b979f259bd13c195403ff37CAS |

González-Wangüemert, M., Giménez-Casalduero, F., and Pérez-Ruzafa, A. (2006). Genetic differentiation of Elysia timida (Risso, 1818) populations in the southwest Mediterranean and Mar Menor coastal lagoon. Biochemical Systematics and Ecology 34, 514–527.
Genetic differentiation of Elysia timida (Risso, 1818) populations in the southwest Mediterranean and Mar Menor coastal lagoon.Crossref | GoogleScholarGoogle Scholar |

Gosliner, T. M. (2001). Aposematic coloration and mimicry in opisthobranch molluscs: new phylogenetic and experimental data. Bollettino Malacologico 37, 163–170.

Gosliner, T. M., and Draheim, R. (1996). Indo-Pacific opisthobranch gastropod biogeography: how do we know what we don’t know? American Malacological Bulletin 12, 37–43.

Gosliner, T. M., and Ghiselin, M. T. (1984). Parallel evolution in opisthobranch gastropods and its implications for phylogenetic methodology. Systematic Biology 33, 255–274.

Hadfield, M. G., and Miller, S. E. (1987). On developmental patterns of opisthobranchs. American Malacological Bulletin 5, 197–214.

Halt, M. N., Kupriyanova, E. K., Cooper, S. J., and Rouse, G. W. (2009). Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida: Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology. Invertebrate Systematics 23, 205–222.
Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida: Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosleisLY%3D&md5=e9513b2a03b7cd8cb5bde44925a48bbdCAS |

Händeler, K., Grzymbowski, Y. P., Krug, P. J., and Wägele, H. (2009). Functional chloroplasts in metazoan cells – a unique evolutionary strategy in animal life. Frontiers in Zoology 6, 28.
Functional chloroplasts in metazoan cells – a unique evolutionary strategy in animal life.Crossref | GoogleScholarGoogle Scholar |

Hart, M. W., Byrne, M., and Johnson, S. L. (2003). Patiriella pseudoexigua (Asteroidea: Asterinidae): a cryptic species complex revealed by molecular and embryological analyses. Journal of the Marine Biological Association of the United Kingdom 83, 1109–1116.
Patiriella pseudoexigua (Asteroidea: Asterinidae): a cryptic species complex revealed by molecular and embryological analyses.Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D. N., and Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology 54, 852–859.
The promise of DNA barcoding for taxonomy.Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D. N., Ratnasingham, S., and de Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B. Biological Sciences 270, S96–S99.
Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Smsbo%3D&md5=f8aa7a07473adc3c030b9d330ed5a0afCAS |

Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., and Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101, 14 812–14 817.
| 1:CAS:528:DC%2BD2cXovVyju7g%3D&md5=0ae4f5812affc4879a365a936524c001CAS |

Hebert, P. D. N., deWaard, J. R., and Landry, J.-F. (2010). DNA barcodes for 1/1000 of the animal kingdom. Biology Letters 6, 359–362.
DNA barcodes for 1/1000 of the animal kingdom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovFCqsrw%3D&md5=1ca3ca7c0522fa32b95aec21afcf6ee8CAS |

Hsü, K. J., Ryan, W. B. F., and Cita, M. B. (1973). Late Miocene desiccation of the Mediterranean. Nature 242, 240–244.
Late Miocene desiccation of the Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck, J. P., and Rannala, B. (2004). Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology 53, 904–913.
Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models.Crossref | GoogleScholarGoogle Scholar |

Jensen, K. R. (1993). Sacoglossa (Mollusca, Opisthobranchia) from Rottnest Island and central Western Australia. In ‘The Marine Flora and Fauna of Rottnest Island, Western Australia’. (Eds F. E. Wells, D. I. Walker, H. Kirkman and R. Lethbridge.) pp. 207–253. (Western Australian Museum: Perth, WA.)

Jensen, K. R. (1996). Phylogenetic systematics and classification of the Sacoglossa (Mollusca, Gastropoda, Opisthobranchia). Philosophical Transactions of the Royal Society of London 351, 91–122.
Phylogenetic systematics and classification of the Sacoglossa (Mollusca, Gastropoda, Opisthobranchia).Crossref | GoogleScholarGoogle Scholar |

Jensen, K. R. (2007). Biogeography of the Sacoglossa (Mollusca, Opisthobranchia). Bonner Zoologische Beitrage 55, 255–281.

Jensen, K. R., and Wells, F. E. (1990). Sacoglossa (=Ascoglossa) (Mollusca, Opisthobranchia) from southern Western Australia. In ‘The Marine Flora and Fauna of Albany, Western Australia’. (Ed. F. E. Wells.) pp. 297–331. (Western Australian Museum: Perth, WA.)

Jörger, K. M., Stoger, I., Kano, Y., Fukuda, H., Knebelsberger, T., and Schrodl, M. (2010). On the origin of Acochlidia and other enigmatic euthyneuran gastropods, with implications for the systematics of Heterobranchia. BMC Evolutionary Biology 10, 323.
On the origin of Acochlidia and other enigmatic euthyneuran gastropods, with implications for the systematics of Heterobranchia.Crossref | GoogleScholarGoogle Scholar |

Klautau, M., Russo, C., Lazoki, C., Boury-Esnault, N., Thorpe, J., and Sole-Cava, A. (1999). Does cosmopolitanism result from over-conservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53, 1414–1422.
Does cosmopolitanism result from over-conservative systematics? A case study using the marine sponge Chondrilla nucula.Crossref | GoogleScholarGoogle Scholar |

Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., and Wilson, D. S. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature 400, 652–655.
Chronology, causes and progression of the Messinian salinity crisis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVCltb4%3D&md5=182f8b91f74571301a487c0e250cde04CAS |

Krug, P. J. (2009). Not my “type”: bet-hedging and dispersal dimorphisms in opisthobranch life histories. The Biological Bulletin 216, 355–372.

Krug, P. J., Ellingson, R. A., Burton, R. A., and Valdés, Á. (2007). A new poecilogonous species of sea slug (Opisthobranchia: Sacoglossa) from California: comparison with the planktotrophic congener Alderia modesta (Lovén, 1844). The Journal of Molluscan Studies 73, 29–38.
A new poecilogonous species of sea slug (Opisthobranchia: Sacoglossa) from California: comparison with the planktotrophic congener Alderia modesta (Lovén, 1844).Crossref | GoogleScholarGoogle Scholar |

Lipscomb, D., Platnick, N., and Wheeler, Q. (2003). The intellectual content of taxonomy: a comment on DNA taxonomy. Trends in Ecology & Evolution 18, 65–66.
The intellectual content of taxonomy: a comment on DNA taxonomy.Crossref | GoogleScholarGoogle Scholar |

Marín, A., and Ros, J. (1989). The chloroplast–animal association in four Iberian sacoglossan opisthobranchs: Elysia timida, Elysia transluscens, Thuridilla hopei and Bosellia mimetica. Scientia Marina 53, 429–440.

Marín, A., and Ros, J. (1992). Dynamics of a peculiar plant–herbivore relationship: the photosynthetic ascoglossan Elysia timida and the chlorophycean Acetabularia acetabulum. Marine Biology 112, 677–682.
Dynamics of a peculiar plant–herbivore relationship: the photosynthetic ascoglossan Elysia timida and the chlorophycean Acetabularia acetabulum.Crossref | GoogleScholarGoogle Scholar |

Marín, A., and Ros, J. (1993). Ultrastructural and ecological aspects of the development of chloroplast retention in the sacoglossan gastropod Elysia timida. The Journal of Molluscan Studies 59, 95–104.
Ultrastructural and ecological aspects of the development of chloroplast retention in the sacoglossan gastropod Elysia timida.Crossref | GoogleScholarGoogle Scholar |

Marshall, D. J., Monro, K., Bode, M., Keough, M. J., and Swearer, S. (2010). Phenotype–environment mismatches reduce connectivity in the sea. Ecology Letters 13, 128–140.
Phenotype–environment mismatches reduce connectivity in the sea.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c%2FltFCnug%3D%3D&md5=a1e80c5a0013337d597ce7d52693278cCAS |

Meyer, C. P., and Paulay, G. (2005). DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3, e422.
DNA barcoding: error rates based on comprehensive sampling.Crossref | GoogleScholarGoogle Scholar |

Naughton, K. M., and O’Hara, T. D. (2009). A new brooding species of the biscuit star Tosia (Echinodermata: Asteroidea: Goniasteridae), distinguished by molecular, morphological and larval characters. Invertebrate Systematics 23, 348–366.
A new brooding species of the biscuit star Tosia (Echinodermata: Asteroidea: Goniasteridae), distinguished by molecular, morphological and larval characters.Crossref | GoogleScholarGoogle Scholar |

Nuttall, T. R. (1989). A new Elysia (Opisthobranchia: Ascoglossa) from the Florida Keys. The Veliger 32, 302–307.

Ortea, J., Moro, L., and Espinosa, J. (1997). Nuevos datos sobre el genero Elysia Risso, 1818 (Opisthobranchia: Sacoglossa) en el Atlantico. Revista de la Academia Canaria de Ciencias 9, 141–155.

Padial, J. M., Castroviejo-Fisher, S., Köhler, J., Vilà, C., Chaparro, J. C., and De la Riva, I. (2009). Deciphering the products of evolution at the species level: the need for an integrative taxonomy. Zoologica Scripta 38, 431–447.
Deciphering the products of evolution at the species level: the need for an integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Pagel, M., and Meade, A. (2004). A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Systematic Biology 53, 571–581.
A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data.Crossref | GoogleScholarGoogle Scholar |

Palanques, A., García-Ladon, E., Gomis, D., Martín, J., Marcos, M., Pascual, A., Puig, P., Gili, J.-M., Emelianov, M., Monserrat, S., Guillén, J., Tintoré, J., Segura, M., Jordi, A., Ruiz, S., Basterretxe, G., Font, J., Blasco, D., and Pagès, F. (2005). General patterns of circulation, sediment fluxes and ecology of the Palamós (La Fonera) submarine canyon, northwestern Mediterranean. Progress in Oceanography 66, 89–119.
General patterns of circulation, sediment fluxes and ecology of the Palamós (La Fonera) submarine canyon, northwestern Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Pelletreau, K. N., Bhattacharya, D., Price, D. C., Worful, J. M., Moustafa, A., and Rumpho, M. E. (2011). Sea slug kleptoplasty and plastid maintenance in a metazoan. Plant Physiology 155, 1561–1565.
Sea slug kleptoplasty and plastid maintenance in a metazoan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVOrsLc%3D&md5=5d806f90aa12b4bacd21d8b56ee01a4cCAS |

Pierce, S. K., Curtis, N. E., and Schwartz, J. A. (2009). Chlorophyll a synthesis by an animal using transferred algal nuclear genes. Symbiosis 49, 121–131.
Chlorophyll a synthesis by an animal using transferred algal nuclear genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyhs7jP&md5=b23966f7e7da3799956b4d81afaf3b95CAS |

Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D., and Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
Sequence-based species delimitation for the DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar |

Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=8a1f07129ca906c4b292e237699ed9deCAS |

Quinn, G. P., and Keough, M. J. (2002). ‘Experimental Design and Data Analysis for Biologists.’ (University Press: Cambridge, UK.)

Rahat, M. (1976). Direct development and symbiotic chloroplasts in Elysia timida (Mollusca: Opisthobranchia). Israel Journal of Zoology 25, 186–193.

Rodriguez, A. (2009). Comparative phylogeography, hybridization, and mitochondrial capture in two species of Caribbean sea slugs with non-planktonic development. M.S. Thesis, California State University, Los Angeles.

Rudman, W. B. (2004). Elysia cf. timida (Risso, 1818). In ‘Sea Slug Forum’. Australian Museum, Sydney. http://www.seaslugforum.net/find/elyscftimi [Verified xxx].

Rumpho, M. E., Worful, J. M., Lee, J., Kannan, K., Tyler, M. S., Bhattacharya, D., Moustafa, A., and Manhart, J. R. (2008). Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proceedings of the National Academy of Sciences of the United States of America 105, 17 867–17 871.
Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCmur3E&md5=ef7fd91a4d2c7a57048c7934602a0933CAS |

Rumpho, M. E., Pelletreau, K. N., Moustafa, A., and Bhattacharya, D. (2011). The making of a photosynthetic animal. The Journal of Experimental Biology 214, 303–311.
The making of a photosynthetic animal.Crossref | GoogleScholarGoogle Scholar |

Schwartz, J. A., Curtis, N. E., and Pierce, S. K. (2010). Using algal transcriptome sequences to identify transferred genes in the sea slug, Elysia chlorotica. Evolutionary Biology 37, 29–37.
Using algal transcriptome sequences to identify transferred genes in the sea slug, Elysia chlorotica.Crossref | GoogleScholarGoogle Scholar |

Smith, M. A., Woodley, N. E., Janzen, D. H., Hallwachs, W., and Hebert, P. D. N. (2006). DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proceedings of the National Academy of Sciences of the United States of America 103, 3657–3662.
DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivFWju7k%3D&md5=6ca3011e2f91cd90c3a4d3ad6d746dc6CAS |

Smith, M. A., Wood, D. M., Janzen, D. H., Hallwachs, W., and Hebert, P. D. N. (2007). DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proceedings of the National Academy of Sciences of the United States of America 104, 4967–4972.
DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFKiurw%3D&md5=eda54524b1ef5504ecdc195a37686135CAS |

Smith, M. A., Rodriguez, J. J., Whitfield, J. B., Deans, A. R., Janzen, D. H., Hallwachs, W., and Hebert, P. D. N. (2008). Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proceedings of the National Academy of Sciences of the United States of America 105, 12 359–12 364.
Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOhtrjN&md5=58ada5b099dc842f18717f0cdc830b03CAS |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=ff48f25899fc988f16ef1534cf14445fCAS |

Tan, D. S. H., Ang, Y., Lim, G. S., Ismail, M. R. B., and Meier, R. (2010). From ‘cryptic species’ to integrative taxonomy: an iterative process involving DNA sequences, morphology, and behaviour leads to the resurrection of Sepsis pyrrhosoma (Sepsidae: Diptera). Zoologica Scripta 39, 51–61.
From ‘cryptic species’ to integrative taxonomy: an iterative process involving DNA sequences, morphology, and behaviour leads to the resurrection of Sepsis pyrrhosoma (Sepsidae: Diptera).Crossref | GoogleScholarGoogle Scholar |

Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., and Vogler, A. P. (2003). A plea for DNA taxonomy. Trends in Ecology & Evolution 18, 70–74.
A plea for DNA taxonomy.Crossref | GoogleScholarGoogle Scholar |

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFyntQ%3D%3D&md5=7634ff92091e34d81ff1696f63bf889cCAS |

Thompson, T. E. (1967). Direct development in a nudibranch, Cadlina laevis, with a discussion of developmental processes in Opisthobranchia. Journal of the Marine Biological Association of the United Kingdom 47, 1–22.
Direct development in a nudibranch, Cadlina laevis, with a discussion of developmental processes in Opisthobranchia.Crossref | GoogleScholarGoogle Scholar |

Thompson, T. E., and Jaklin, A. (1988). Eastern Mediterranean Opisthobranchia: Elysiidae (Sacoglossa = Ascoglossa). Journal of Molluscan Studies 54, 59–69.

Trench, R. K., Greene, R. W., and Bystrom, B. G. (1969). Chloroplasts as functional organelles in animal tissues. The Journal of Cell Biology 42, 404–417.
Chloroplasts as functional organelles in animal tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXkslyntL8%3D&md5=b006dce724bde40078c6b793dc4efae9CAS |

Wägele, H., Deusch, O., Händeler, K., Martin, R., Schmitt, V., Christa, G., Pinzger, B., Gould, S. B., Dagan, T., Klussmann-Kolb, A., and Martin, W. (2011). Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes. Molecular Biology and Evolution 28, 699–706.
Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes.Crossref | GoogleScholarGoogle Scholar |

Will, K. W., Mishler, B. D., and Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 54, 844–851.
The perils of DNA barcoding and the need for integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Wirtz, P., and Anker, A. (2009). Range extension for Elysia timida (Opisthobranchia: Sacoglossa) to São Tomé Island (eastern central Atlantic), with a film showing the curious locomotion of the species. Marine Biodiversity Records 2, e144.
Range extension for Elysia timida (Opisthobranchia: Sacoglossa) to São Tomé Island (eastern central Atlantic), with a film showing the curious locomotion of the species.Crossref | GoogleScholarGoogle Scholar |