Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

A new brooding species of the biscuit star Tosia (Echinodermata : Asteroidea : Goniasteridae), distinguished by molecular, morphological and larval characters

Kate M. Naughton A B C and Timothy D. O’Hara A
+ Author Affiliations
- Author Affiliations

A Sciences Department, Museum Victoria, GPO Box 666, Melbourne, Vic. 3001, Australia.

B Department of Zoology, University of Melbourne, Vic. 3010, Australia.

C Corresponding author. Email: kmnaughton@gmail.com

Invertebrate Systematics 23(4) 348-366 https://doi.org/10.1071/IS08021
Submitted: 8 May 2008  Accepted: 13 July 2009   Published: 30 October 2009

Abstract

The biscuit star Tosia australis Gray, 1840 is a well known component of the shallow rocky reef fauna of south-eastern Australia. The putative T. australis species complex was subjected to reproductive, morphometric and molecular analyses. Molecular analyses of the data from three markers (mitochondrial COI and 16S rRNA and the nuclear non-coding region ITS2) confirmed the presence of a cryptic species, the morphology of which does not agree with any of the existing nominal species. Two separate reproductive modes were observed within the complex and documented via scanning electron microscopy. T. neossia, sp. nov., described herein from south-eastern Australia, is shown to release gametes from gonopores on the actinal surface. Embryos develop first into non-feeding, non-swimming brachiolaria, and then into tripod brachiolaria before metamorphosis. No surface cilia are present at any point throughout development of T. neossia. T. australis sensu stricto is shown to release gametes from the abactinal surface. Embryos develop into non-feeding, swimming brachiolaria before metamorphosis. Whereas T. australis var. astrologorum is confirmed as synonymous with T. australis, the status of the putative Western Australian taxon T. nobilis remains unresolved.

Additional keywords: Bayesian phylogenetic analysis, brooding, cilia, colouration, larval morphology, life-history evolution, mitochondrial DNA, nuclear DNA.


Acknowledgements

Special thanks to Richard Emlet for providing specimens and larvae of Tosia australis for the study. Many thanks go also to Maria Byrne and Paula Cisternas (University of Sydney), Andrew Cabrinovic (British Museum of Natural History, London), Marc Eléaume (Muséum National d’Histoire Naturelle, Paris), Nick Kirby (Melbourne Aquarium), Carsten Lueter (Museum für Naturkunde, Berlin), David Macmillan and Joan Clark (University of Melbourne), Benjamin Ong (Museum Victoria) and Genefor Walker-Smyth (Tasmanian Museum and Art Gallery) for their invaluable contributions to this project. David Staples (Museum Victoria) provided the photographs used in Figs 1 and 8.


References


Atwood D. G. (1973) Larval development in the asteroid Echinaster echinophorus. Biological Bulletin 144, 1–11.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bennett I., Pope E. C. (1960) Intertidal zonation of the exposed rocky shores of Tasmania and the relationship with the rest of Australia. Australian Journal of Marine and Freshwater Research 11, 182–219.
Crossref | GoogleScholarGoogle Scholar | open url image1

Birkeland C., Chia F.-S., Strathmann R. R. (1971) Development, substratum selection, delay of metamorphosis and growth in the seastar, Mediaster aequalis Stimpson. Biological Bulletin 141, 99–108.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bosch I. (1989) Contrasting modes of reproduction in two Antarctic asteroids of the genus Porania, with a description of unusual feeding and non-feeding larval types. Biological Bulletin 177, 77–82.
Crossref | GoogleScholarGoogle Scholar | open url image1

Byrne M. (1992) Reproduction of sympatric populations of Patiriella gunnii, P. calcar and P. exigua in New South Wales, astrinid seastars with direct development. Marine Biology 114, 297–316.
Crossref | GoogleScholarGoogle Scholar | open url image1

Byrne M. (1995) Changes in larval morphology in the evolution of benthic development by Patiriella exigua (Asteroidea: Asterinidae), a comparison with the larvae of Patiriella species with planktonic development. Biological Bulletin 188, 293–305.
Crossref | GoogleScholarGoogle Scholar | open url image1

Byrne M. (2005) Viviparity in the sea star Cryptasterina hystera (Asterinidae) – conserved and modified features in reproduction and development. Biological Bulletin 208, 81–91.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Byrne M. (2006) Life history diversity and evolution in the Asterinidae. Integrative and Comparative Biology 46, 243–254.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Byrne M., Cerra A. (2000) Lipid dynamics in the embryos of Patiriella species (Asteroidea) with divergent modes of development. Development, Growth & Differentiation 42, 79–86.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Byrne M. , Cerra A. , Hart M. W. , and Smith M. J. (1999). Life history diversity and molecular phylogeny in the Australian sea star genus Patiriella. In ‘The Other 99%. The Conservation and Biodiversity of Invertebrates’. (Eds W. Ponder and D. Lunney.) pp. 188–196. (Transactions of the Royal Zoological Society of New South Wales: Sydney.)

Byrne M., Hart M. W., Cerra A., Cisternas P. (2003) Reproduction and larval morphology of broadcasting and viviparous species in the Cryptasterina species complex. Biological Bulletin 205, 285–294.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chia F.-S. (1968) The embryology of a brooding starfish, Leptasterias hexactis (Stimpson). Acta Zoologica 49, 321–364. open url image1

Clark A. M. (1953) Notes on Asteroids in the British Museum (Natural History). IV. Tosia and Pentagonaster. Bulletin of the British Museum (Natural History) – Zoology plates 42–46. 1, 396–411. open url image1

Clark H. L. (1928) The sea-lilies, sea-stars, brittle stars and sea-urchins of the South Australian Museum. Records of the South Australian Museum figs 108–142. 3, 361–482. open url image1

Clarke K. N. , and Gorley R. N. (2006). ‘Primer-E v.6. User Manual/Tutorial.’ (Primer-E Ltd: Plymouth, UK.)

Coleman N. (1994). ‘Sea Stars of Australasia and their Relatives.’ (Underwater Geographic Pty Ltd: Brisbane.)

Coleman N. (2007). ‘Sea-stars: Echinoderms of the Asia/Indo-Pacific.’ (Neville Coleman’s Underwater Geographic: Springwood, Qld.)

Drummond A. J., Rambaut A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214–221.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Edgar G. J. (2000). ‘Australian Marine Life: The Plants and Animals of Temperate Waters.’ 1st edn, revised. (Reed New Holland: Sydney.)

Emlet R. B. (1994) Body form and patterns of ciliation in nonfeeding larvae of echinoderms: functional solutions to swimming in the plankton? American Zoologist 34, 570–585. open url image1

Gosselin P., Jangoux M. (1998) From competent larva to exotrophic juvenile: a morphofunctional study of the perimetamorphic period of Paracentrotus lividus (Echinodermata: Echinoidea). Zoomorphology 118, 31–43.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gray J. E. (1840) A synopsis of the genera and species of the class Hypostoma (Asterias, Linnaeus). Annals and Magazine of Natural History 6, 175–184. open url image1

Grosberg R. K. , Levitan D. R. , and Cameron B. B. (1996). Simple extraction and RAPD–PCR protocols. In ‘Molecular Zoology: Advances, Strategies, and Protocols’. (Eds J. D. Ferraris and S. R. Palumbi.) pp. 470–473. (Wiley-Liss: New York.)

Haesaerts D., Jangoux M., Flammang P. (2006) Adaptations to benthic development: functional morphology of the attachment complex of the brachiolaria larva in the sea star Asterina gibbosa. Biological Bulletin 211, 172–182.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hall T. (1998) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98. open url image1

Hamel J.-F., Mercier A. (1995) Prespawning behavior, spawning, and development of the brooding starfish, Leptasterias polaris. Biological Bulletin 188, 32–45.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hart M. W., Byrne M., Smith M. J. (1997) Molecular phylogenetic analysis of life-history evolution in asterinid starfish. Evolution 51, 1848–1861.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hart M. W., Byrne M., Johnson S. L. (2003) Patiriella pseudoexigua (Asteroidea: Asterinidae): a cryptic species complex revealed by molecular and embryological analyses. Journal of the Marine Biological Association of the United Kingdom 83, 1109–1116.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hart M. W., Johnson S. L., Addison J. A., Byrne M. (2004) Strong character incongruence and character choice in phylogeny of sea stars of the Asterinidae. Invertebrate Biology 123, 343–356. open url image1

Hart M. W., Keever C. S., Dartnall A. J., Byrne M. (2006) Morphological and genetic variation indicate cryptic species within Lamarck’s little sea star, Parvulastra (=Patiriella) exigua. Biological Bulletin 210, 158–167.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Himmelman J. H., Lavergne Y., Cardinal A., Martel G., Jalbert P. (1982) Brooding behaviour of the Northern Sea Star Leptasterias polaris. Marine Biology 68, 235–240.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hyman L. H. (1955). ‘Echinodermata: The Coelomate Bilateria.’ (McGraw-Hill: New York.)

Knowles L. L., Carstens B. C. (2007) Delimiting species without monophyletic gene trees. Systematic Biology 56, 887–895.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Knowlton N. (1993) Sibling species in the sea. Annual Review of Ecology and Systematics 24, 189–216.
Crossref | GoogleScholarGoogle Scholar | open url image1

Knowlton N. (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420, 73–90.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Komatsu M., Kano Y. T., Yoshizawa H., Akabane S., Oguro C. (1979) Reproduction and development of the hermaphroditic sea-star, Asterina minor Hayashi. Biological Bulletin 157, 258–274.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kumar S., Tamura K., Jakobsen B., Nei M. (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lane D. J. W. , and Hu J. M. L. (1994). Abbreviated development in Iconaster longimanus (Möbius): planktonic lecithotrophy in a tropical goniasterid sea star. In ‘Echinoderms through Time’. (Eds B. David, A. Guille, J.-P. Féral and M. Roux.) pp. 343–346. (A.A. Balkema: Rotterdam.)

Livingstone A. A. (1932) The Australian species of Tosia (Asteroidea). Records of the Australian Museum plates 43–44. 18, 373–382. open url image1

Mah C. (2005) A phylogeny of Iconaster and Glyphodiscus (Echinodermata, Asteroida, Valvata, Goniasteridae) with descriptions of four new species. Zoosystema 27, 137–161. open url image1

Mah C. (2007) Systematics, phylogeny and historical biogeography of the Pentagonaster clade (Asteroidea: Valvatida: Goniasteridae). Invertebrate Systematics 21, 311–339.
Crossref | GoogleScholarGoogle Scholar | open url image1

Marsh L. M. (1991). Shallow water echinoderms of the Albany region, south-western Australia. In ‘Proceedings of the Third International Marine Biological Workshop: the Marine Flora and Fauna of Albany, Western Australia’. (Eds F. E. Wells, D. I. Walker, H. Kirkman and R. C. Lethbridge.) pp. 439–482. (Western Australian Museum: Perth.)

McClintock J. B., Watts S. A., Marion K. R., Hopkins T. S. (1995) Gonadal cycle, gametogenesis and energy allocation in two sympatric mid shelf sea stars with contrasting modes of reproduction. Bulletin of Marine Science 57, 442–452. open url image1

McEdward L. R., Janies D. A. (1997) Relationships among development, ecology and morphology in the evolution of echinoderm larvae and life cycles. Biological Journal of the Linnean Society. Linnean Society of London 60, 381–400.
Crossref | GoogleScholarGoogle Scholar | open url image1

McEdward L. R., Miner B. G. (2001) Larval and life-cycle patterns in echinoderms. Canadian Journal of Zoology 79, 1125–1170.
Crossref | GoogleScholarGoogle Scholar | open url image1

Müller J. , and Troschel F. H. (1842). ‘System der Asteriden. 1. Asteriae. 2. Ophiuridae.’ (F. Vieweg und Sohn: Braunschweig.)

Müller J., Troschel F. H. (1843) Neue Beitrage zur Kenntnis der Asteriden. Archiv für naturgeschichte 9, 113–131. open url image1

O’Hara T. D. , Byrne M. , and Cisternas P. (2004). The Ophiocoma erinaceus complex: another case of cryptic speciation in echinoderms. In ‘Echinoderms: München’. (Eds T. Heinzeller and J. H. Nebelsick.) pp. 537–542. (A.A. Balkema: Rotterdam.)

O’Loughlin P. M. (1991). Brooding and fission in shallow water echinoderms of southern Australia. In ‘Biology of Echinodermata’. (Eds T. Yanagisawa, I. Yasumasu, C. Oguro, N. Suzuki and T. Motokawa.) pp. 223–228. (A.A. Balkema: Rotterdam.)

O’Loughlin P. M., Waters J. M. (2004) A molecular and morphological revision of genera of Asterinidae (Echinodermata: Asteroidea). Memoirs of Museum Victoria 61, 1–40. open url image1

Palumbi S. R. , Martin A. , Romano S. , McMillan W. O. , Stice L. , and Grabowski G. (1996). ‘The Simple Fool’s Guide to PCR.’ (Kewalo Marine Laboratory, University of Hawaii: Honolulu, HI.)

Pernet B. (2003) Persistent ancestral feeding structures in nonfeeding annelid larvae. Biological Bulletin 205, 295–307.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Perrier E. (1869) Recherches sur les Pédicellaires et les Ambulacres des Astéries et des Oursins. Annales des Sciences Naturelles 12, 197–304. open url image1

Perrier E. (1875). ‘Révision de la Collection de Stellérides du Museum d’Histoire Naturelle de Paris.’ (Reinwald: Paris.)

Posada S., Crandall K. A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Prowse T. A. A., Sewell M. A., Byrne M. (2007) Fuels for development: evolution of maternal provisioning in asterinid sea stars. Marine Biology 153, 337–349.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ronquist F., Huelsenbeck J. P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Rowe F. W. E. , and Gates J. (1995). ‘Echinodermata.’ (CSIRO: Melbourne.)

Scheibling R. E., Lawrence J. M. (1982) Differences in reproductive strategies of morphs of the genus Echinaster (Echinodermata: Asteroidea) from the Eastern Gulf of Mexico. Marine Biology 70, 51–62.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shepherd S. A. (1968) The shallow water echinoderm fauna of South Australia: Part 1. The asteroids. Records of the South Australian Museum 15, 729–756. open url image1

Strathmann R. R. (1988). Larvae, phylogeny and von Baer’s Law. In ‘Echinoderm Phylogeny and Evolutionary Biology’. (Eds C. R. C. Paul and A. B. Smith.) pp. 53–68. (Clarendon Press: Oxford, USA.)

Thompson J. D., Higgins D. G., Gibson T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Tominaga H. , Komatsu M. , and Oguro C. (1994). Aggregation for spawning in the breeding season of the sea-star, Asterina minor Hayashi. In ‘Echinoderms through Time’. (Eds B. David, A. Guille, J.-P. Féral and M. Roux.) pp. 369–373. (A.A. Balkema: Rotterdam.)

Tyler P. A., Pain S. L. (1982) Observations of gametogenesis in the deep-sea asteroids Paragonaster subtilis and Pseudarchaster parelii (Phanerozonia, Goniasteridae). International Journal of Invertebrate Reproduction 5, 269–272. open url image1

Tyler P. A. , Pain S. L. , and Gage J. D. (1982). Gametogenic cycles in deep-sea phanerozoan asteroida from the N.E. Atlantic. In ‘Echinoderms: Proceedings of the International Conference, Tampa Bay’. (Ed. J. M. Lawrence.) pp. 431–434. (A.A. Balkema: Rotterdam.)

Villinski J. T., Villinski J. T., Byrne M., Raff R. A. (2002) Convergent maternal provisioning and life history evolution in echinoderms. Evolution 56, 1764–1775.
PubMed |
open url image1

Waters J. M., Roy M. S. (2003) Marine biogeography of southern Australia: phylogeographical structure in a temperate sea-star. Journal of Biogeography 30, 1787–1796.
Crossref | GoogleScholarGoogle Scholar | open url image1









Appendix 1. List of specimens sequenced for the current study

Haplotype codes are referred to on the phylogenetic trees (Figs 2, 3). Composite mitochondrial haplotype names shown on the mitochondrial tree consist of a numeral referring to the 16S haplotype and a letter referring to the COI haplotype, as shown in the table



Click to zoom