Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera : Curculionidae)

Jonas J. Astrin A and Peter E. Stüben B
+ Author Affiliations
- Author Affiliations

A ZFMK: Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany. Email: j.astrin.zfmk@uni-bonn.de

B Curculio Institute, Hauweg 62, D-41066 Mönchengladbach, Germany. Email: p.stueben@t-online.de

Invertebrate Systematics 22(5) 503-522 https://doi.org/10.1071/IS07057
Submitted: 14 November 2007  Accepted: 29 July 2008   Published: 4 December 2008

Abstract

A phylogeny is presented for the western Palaearctic representatives of the weevil subfamily Cryptorhynchinae using a combination of phenotypic and genotypic characters. This phylogeny is the first for the extremely species-rich Cryptorhynchinae to use molecular data (mitochondrial CO1 and 16S as well as nuclear ribosomal 28S). The results of this study show the need for molecular tools within this morphologically cryptic group of weevils and provide a scaffold based on which genus assignment can be tested. The present study mostly corroborates the current subdivision into genera (but many of the subgeneric groups are questioned). Three new genera are described: Montanacalles gen. nov. (type species: Kyklioacalles nevadaensis Stüben, 2001), Coloracalles gen. nov. (type species: Acalles humerosus Fairmaire, 1862) and Elliptacalles gen. nov. (type species: Acalles longus Desbrochers, 1892). Relevant external characters and the male genitalia of all discussed taxa are illustrated. Three species are transferred to different genera: Kyklioacalles aubei (Boheman, 1837) (formerly: Acalles), Ruteria major (Solari A. & F., 1907) and Ruteria minosi (Bahr & Bayer, 2005) (both formerly Echinodera).


Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (grant WA 530/36-1). We are indebted to R. Anderson, F. Bahr, Ch. Bayer, T. Clayhills, J. Longino, S. Scharf and R. Stejskal for contributing specimens. We also thank C. Etzbauer for the ordering of laboratory consumables and two anonymous referees, B. Misof, J. Skuhrovec, W. Wägele, R. Anderson, T. Swinehart, Ch. Bayer, K. Meusemann, L. Behne and the ZFMK laboratory crew for discussions or information.


References


Alonso-Zarazaga M. A. , and Lyal C. H. C. (1999). ‘A World Catalogue of Families and Genera of Curculionoidea (Insecta: Coleoptera).’ (Entomopraxis: Barcelona, Spain.)

Anderson R. S. (2008) A review of the genus Cryptorhynchus Illiger 1807 in the United States and Canada (Curculionidae: Cryptorhynchinae). Coleopterists Bulletin 62, 168–180.
Crossref | GoogleScholarGoogle Scholar | open url image1

Astrin J. J., Huber B. A., Misof B., Klütsch C. F. (2006) Molecular taxonomy in pholcid spiders (Pholcidae, Araneae): evaluation of species identification methods using CO1 and 16S rRNA. Zoologica Scripta 35, 441–457.
Crossref | GoogleScholarGoogle Scholar | open url image1

Astrin J. J., Huber B. A., Misof B. (2007) The pitfalls of exaggeration: molecular and morphological evidence suggests Kaliana is a synonym of Mesabolivar (Araneae: Pholcidae). Zootaxa 1646, 17–30. open url image1

Bahr F. (2000). Die westpaläarktischen Arten des Genus Calacalles. Snudebiller: Studies on Taxonomy, Biology and Ecology of Curculionoidea 1, 114–136.

Bahr F. , and Bayer C. (2005). In ‘Beschreibung neuer Cryptorhynchinae aus dem mediterranen Raum (Coleoptera: Curculionidae: Cryptorhynchinae)’. (Authors: P. E. Stüben, F. Bahr, Ch. Germann, L. Behne and Ch. Bayer.) Snudebiller: Studies on Taxonomy, Biology and Ecology of Curculionoidea 6, 84–113.

Bahr F. , and Stüben P. E. (2002). Digital-Weevil-Determination for Curculionoidea of West Palearctic – Transalpina: Cryptorhynchinae. Snudebiller: Studies on Taxonomy, Biology and Ecology of Curculionoidea 3, 14–87.

Berger J. (2006) The case for objective Bayesian analysis. Bayesian Analysis (Online) 1, 385–402. open url image1

Bergsten J. (2005) A review of long-branch attraction. Cladistics 21, 163–193.
Crossref | GoogleScholarGoogle Scholar | open url image1

Björklund M. (1999) Are third positions really that bad? A test using vertebrate cytochrome b. Cladistics 15, 191–197. open url image1

Brisout H. (1864) Monographie des espèces europèennes et algériennes du genre Acalles. Annales de la Société Entomologique de France 4, 441–482. open url image1

Caldara R. (1973) Echinodera graeca n.sp. e considerazioni su altre specie del genere. Atti della Società italiana di Scienze naturali e del Museo Civico di Storia naturale di Milano 114, 396–402. open url image1

Crandall K. A., Fitzpatrick J. E. (1996) Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Systematic Biology 45, 1–26.
Crossref | GoogleScholarGoogle Scholar | open url image1

Darlu P., Lecointre G. (2002) When does the incongruence length difference test fail? Molecular Biology and Evolution 19, 432–437.
CAS | PubMed |
open url image1

Desbrochers J. (1892) Espéces inédites de Curculionides de l’Ancien Monde. Frelon 2, 88–101. open url image1

Edgar R. C. (2004a) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Edgar R. C. (2004b) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Fairmaire L. M. H. (1862) Miscellanea Entomologica. Coleoptera. Annales de la Société Entomologique de France 4, 547–558. open url image1

Farris J. S. (1988). ‘Hennig86, Version 1.5.’ Distributed by the author. (Port Jefferson Station, NY, USA.)

Farris J. S., Kallersjö M., Kluge A. G., Bult C. (1994) Testing significance of incongruence. Cladistics 10, 315–319.
Crossref | GoogleScholarGoogle Scholar | open url image1

Felsenstein J. (1985) Confidence-limits on phylogenies – an approach using the bootstrap. Evolution 39, 783–791.
Crossref | GoogleScholarGoogle Scholar | open url image1

Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
CAS | PubMed |
open url image1

Giribet G., Wheeler W. C. (1999) On gaps. Molecular Phylogenetics and Evolution 13, 132–143.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Gleeson D. M., Rowell D. M., Tait N. N., Briscoe D. A., Higgins A. V. (1998) Phylogenetic relationships among Onychophora from Australasia inferred from the mitochondrial cytochrome oxidase subunit I gene. Molecular Phylogenetics and Evolution 10, 237–248.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hasegawa M., Kishino H., Yano T. (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Hoffmann A. (1958) Coléoptères Curculionides (Troisième Partie). Faune de France 62, 1210–1839. open url image1

Huelsenbeck J. P., Bollback J. P. (2001) Empirical and hierarchical Bayesian estimation of ancestral states. Systematic Biology 50, 351–366.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Huelsenbeck J. P., Ronquist F. (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Huelsenbeck J. P., Larget B., Miller R. E., Ronquist F. (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Systematic Biology 51, 673–688.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hustache A. (1936). ‘Curculionidae: Cryptorhynchinae (Coleopterorum Catalogus, pars 151).’ (Junk & Schenkling: Berlin, Germany.)

Kimura M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Lanave C., Preparata G., Saccone C., Serio G. (1984) A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution 20, 86–93.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Meyer P. (1896). ‘Curculionidae. 4. Theil: Die palaearctischen Cryptorrhynchiden. Bestimmungs-Tabellen der europäischen Coleopteren: 35.’ (Reitter: Paskau, Czech Republic.)

Morrison D. A., Ellis J. T. (1997) Effects of nucleotide sequence alignment on phylogeny estimation: a case study of 18S rDNAs of apicomplexa. Molecular Biology and Evolution 14, 428–441.
CAS | PubMed |
open url image1

Nixon K. C. (2002). ‘Winclada, Version 1.00.08.’ Distributed by the author. (Ithaca, NY, USA.)

Palumbi S. R. (1996). Nucleic Acids II: the polymerase chain reaction. In ‘Molecular Systematics’, 2nd edn. (Eds D. M. Hillis, C. Moritz and B. K. Mable.) pp. 205–246. (Sinauer: Sunderland, MA, USA.)

Papp C. S. (1979). ‘An illustrated catalog of the Cryptorhynchinae of the New World with generic descriptions, references to the literature and deposition of type material (Coleoptera: Curculionidae).’ (Department of Food and Agriculture – Entomology: Sacramento, CA, USA.)

Paulay G. (1985) Adaptive radiation on an isolated oceanic island – the Cryptorhynchinae (Curculionidae) of Rapa revisited. Biological Journal of the Linnean Society 26, 95–187.
Crossref | GoogleScholarGoogle Scholar | open url image1

Porta A. (1932). ‘Fauna Coleopterorum Italica – Rhynchophora-Lamellicornia. Anthribidae, Brenthidae, Curculionidae, Nemonychidae, Ipidae, Lucanidae, Scarabaeidae.’ (Stabilimento Tipografico Piacentino: Piacenza, Italy.)

Posada D., Buckley T. R. (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793–808.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Posada D., Crandall K. A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ronquist F., Huelsenbeck J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Ros V., Breeuwer J. (2007) Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Experimental & Applied Acarology 42, 239–262.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Roudier A. (1954) Etude des Acalles et Echinodera (Col., Curculionidae) des Îles Canaries et plus particulièrement du matériel recueille par le Dr. Hakan Lindberg au cours des années 1947 à 1950. Commentationes Biologicae 14, 1–16. open url image1

Savitsky V. Y. (1997) Review of weevils from the genus Ruteria (Coleoptera, Curculionidae) in the fauna of Russia and adjacent countries. Zoologicheskij Zhurnal 76, 785–796. open url image1

Schwarz G. (1978) Estimating the dimension of a model. The Annals of Statistics 6, 461–464.
Crossref | GoogleScholarGoogle Scholar | open url image1

Simmons M. P., Ochoterena H. (2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49, 369–381.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1

Solari A., Solari F. (1907) Studii sugli Acalles. Annali del Museo Civico di Storia Naturale Giacomo Doria 3, 479–551. open url image1

Stüben P. E. (1998) Die südeuropäischen Arten der Gattung Echinodera Wollaston und die Gattung Ruteria Roudier stat. nov. (Cryptorhynchinae–Studie 2.) Beitraege zur Entomologie 48, 417–448. open url image1

Stüben P. E. (1999a) Taxonomie und Phylogenie der westpaläarktischen Arten der Gattung Kyklioacalles g. n. (Coleoptera: Curculionidae: Cryptorhynchinae). (Cryptorhynchinae–Studie 3.) Stuttgarter Beitrage zur Naturkunde. Serie A, Biologie 584, 1–38. open url image1

Stüben P. E. (1999b) Die westpaläarktischen Arten der Gattung Onyxacalles g. n. (Coleoptera: Curculionidae: Cryptorhynchinae). (Cryptorhynchinae–Studie 4.) Entomologische Blätter 95, 175–203. open url image1

Stüben P. E. (2000). Biogeographie und Evolution der kanarischen Cryptorhynchinae. (Cryptorhynchinae–Studie 10.) Snudebiller: Studies on Taxonomy, Biology and Ecology of Curculionoidea 1, 293–306.

Stüben P. E. (2001). Beschreibung einer neuen Kyklioacalles–Art aus Südspanien. Mit einem neuen Schlüssel der Arten des Genus Kyklioacalles (Col.: Curculionidae, Cryptorhynchinae). Snudebiller: Studies on Taxonomy, Biology and Ecology of Curculionoidea 1, 162–179. (Ed. P. E. Stüben.)

Stüben P. E. (2003). Revision des Genus Kyklioacalles und Beschreibung der Untergattung Palaeoacalles subg. n. unter Heranziehung phylogenetischer, morphogenetischer und biogeographischer Aspekte (Curculionidae: Cryptorhynchinae). Snudebiller: Studies on Taxonomy, Biology and Ecology of Curculionoidea 4, 116–166.

Stüben P. E. (2004). Die Cryptorhynchinae der Azoren (Coleoptera: Curculionidae). Snudebiller: Studies on Taxonomy, Biology and Ecology of Curculionoidea 5, 34–59.

Stüben P. E. (2006). Revision der Kyklioacalles punctaticollis Gruppe – Anmerkungen zur Biologie und evolutiven Adaptation der Arten (Coleoptera: Curculionidae: Cryptorhynchinae). Snudebiller: Studies on Taxonomy, Biology and Ecology of Curculionoidea 7, 214–234.

Stüben P. E. (2008). An illustrated up-to-date catalogue of Westpalearctic Cryptorhynchinae (Curculionoidea). Available at http://www.curci.de/illustrated_catalogue/westpalearctic_cryptorhynchinae/ [Accessed April 2008.]

Stüben P. E. (in press). Key to the genera of the subfamily Cryptorhynchinae from the West Palaearctic region. Snudebiller: Studies on Taxonomy, Biology and Ecology of Curculionoidea 9.

Stüben P. E., Behne L. (1998) Revision der Acalles krueperi-Gruppe mit Beschreibung der Gattung Dichromacalles g. n. und der Untergattung Balcanacalles subg. n. (Coleoptera, Curculionidae, Cryptorhynchinae). (Cryptorhynchinae–Studie 1.) Entomologische Blätter 94, open url image1

Stüben P. E. , and Germann C. (2005). Neue Erkenntnisse zur Taxonomie, Biologie und Ökologie der Cryptorhynchinae von den Makaronesischen Inseln. 1. Beitrag: Kanaren/Tenerife (Coleoptera: Curculionidae: Cryptorhynchinae). Snudebiller: Studies on Taxonomy, Biology and Ecology of Curculionoidea 6, 37–83.

Stüben P. E., Wolf I. (1998) Der Artstatus von Acalles provincialis Hoffmann aus den Meeralpen. Nachrichtenblatt der Bayerischen Entomologen 48, 36–44. open url image1

Stüben P. E. , Behne L. , and Bahr F. (2001). Analytischer Katalog der westpaläarktischen Cryptorhynchinae, Teil 1 (Coleoptera: Curculionidae: Cryptorhynchinae: Kyklioacalles, Onyxacalles, Dichromacalles, Calacalles, Echinodera). Snudebiller: Studies on Taxonomy, Biology and Ecology of Curculionoidea 2, 59–119.

Stüben P. E. , Behne L. , and Bahr F. (2003). Analytischer Katalog der westpaläarktischen Cryptorhynchinae/Analytical Catalogue of Westpalearctic Cryptorhynchinae. Teil/Part 2: Acalles, Acallocrates (Col.: Curculionidae: Cryptorhynchinae). Snudebiller: Studies on Taxonomy, Biology and Ecology of Curculionoidea 4, 11–100.

Swofford D. L. (2002). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10.’ (Sinauer Associates: Sunderland, MA, USA.)

Wägele J. W. (2005). ‘Foundations of Phylogenetic Systematics.’ (Pfeil Verlag: Munich, Germany.)

Wägele J. W., Mayer C. (2007) Visualizing differences in phylogenetic information content of alignments and distinction of three classes of long-branch effects. BMC Evolutionary Biology 7, 147.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wink M., Mikes Z., Rheinheimer J. (1997) Phylogenetic relationships in weevils (Coleoptera: Curculionoidea) inferred from nucleotide sequences of mitochondrial 16S rDNA. Naturwissenschaften 84, 318–321.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Yoder A. D., Irwin J. A., Payseur B. A. (2001) Failure of the ILD to determine data combinability for slow loris phylogeny. Systematic Biology 50, 408–424.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | open url image1










Appendix 1.  Collecting and voucher data for the sequenced weevils
Collecting data usually consist of country, region, coordinates, year of collection and the collector’s name. Vouchers (DNA, morphology/tissue) are kept at the Zoologisches Forschungsmuseum Alexander Koenig (ZFMK). GenBank accession numbers are given in the text. LT = lectotype, PT = paratype
Click to zoom



Appendix 2.  Morphological characters used in the phylogenetic analyses
Additive binary coding (multi-column coding) was used to code ordered multistate transformation series
Click to zoom



Appendix 3.  Data matrix for the 36 morphological characters used in the analysis
? = missing character
Click to zoom