A New Zealand species of the trans-Tasman centipede order Craterostigmomorpha (Arthropoda : Chilopoda) corroborated by molecular evidence
Gregory D. Edgecombe A C and Gonzalo Giribet B CA Department of Palaeontology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
B Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
C Corresponding authors. Email: g.edgecombe@nhm.ac.uk, ggiribet@oeb.harvard.edu
Invertebrate Systematics 22(1) 1-15 https://doi.org/10.1071/IS07036
Submitted: 23 July 2007 Accepted: 27 November 2007 Published: 18 March 2008
Abstract
Craterostigmus tasmanianus Pocock, 1902, is the sole species in the centipede order Craterostigmomorpha and the focus of much phylogenetic research in Chilopoda. Originally named from Tasmania, Craterostigmus from New Zealand was first considered conspecific with Tasmanian samples based on external morphology, though recent anatomical studies have argued for a deep divergence between New Zealand and Tasmanian Craterostigmus, and a high-ranking taxonomic separation has been advocated. Unambiguous diagnostic nucleotide characters in nuclear ribosomal 18S and 28S rRNA genes as well as in the mitochondrial 16S rRNA, together with the significantly smaller size of New Zealand individuals, the arrangement of supernumerary Malpighian tubules, and patterns in leg spinosity, permit distinction of a New Zealand species, Craterostigmus crabilli, sp. nov. In addition, phylogenetic analysis of four markers (the aforementioned markers plus cytochrome c oxidase subunit I) suggests differentiation of C. tasmanianus from the New Zealand specimens. Combination of the nuclear ribosomal genes and mitochondrial 16S rRNA and COI sequences retrieves a geographic pattern within C. crabilli, sp. nov. in which geographic proximity is decoupled from closest affinities, although the 16S rRNA dataset alone shows more geographic structure. The genetic pattern observed, where among species diversity (for both mitochondrial markers) is equivalent to, or greater than, the within species diversity, is not consistent with a recent long-distance dispersal event, and a relictual Gondwanan distribution is the most plausible alternative.
Additional keywords: biogeography, Craterostigmus, Gondwana, molecular diagnosis, Tasmantia, Zealandia.
Acknowledgements
Joey Pakes and Jessica Baker produced most of the sequence data employed. Peter Johns (Canterbury Museum) kindly loaned Craterostigmus specimens collected by him over many years. Trevor Crosby and Grace Hall (New Zealand Arthropod Collection) facilitated study of collections in their care in Auckland. Bob Mesibov assisted with a spreadsheet for specimens measured at the Queen Victoria Museum and Art Gallery and provided most of the Tasmanian specimens used for sequencing. Suzanne Bullock prepared the line drawings, Barbara Duperron painted the centipede in Fig. 4, and two referees provided helpful suggestions. Sarah Boyer (formerly MCZ, Harvard University) and Cyrille D’Haese (Muséum national d’Histoire naturelle, Paris) provided good company in the field. The New Zealand Department of Conservation (DOC) arranged all permits and provided maps and field advice; Ian Millar at the Nelson DOC office deserves special thanks. Fieldwork was supported by a Putnam expedition Grant; this material is based upon work supported in part by the USA National Science Foundation under Grants 0236871 and DEB-0508789 to GG.
Archey G.
(1917) The occurrence in New Zealand of Craterostigmus tasmanianus Pocock (Chilopoda). Transactions and Proceedings of the New Zealand Institute 49, 319–320.
Archey G.
(1936) Revision of the Chilopoda of New Zealand. Part 1. Records of the Auckland Institute and Museum 1, 43–70.
Borucki H.
(1996) Evolution und Phylogenetisches System der Chilopoda (Mandibulata, Tracheata). Verhandlungen des naturwissenschaftlichen Vereins in Hamburg 35, 95–226.
Borucki H., Rosenberg J.
(1997) Transport-active organs within the ‘ano-genital’ capsule of Craterostigmus tasmanianus (Chilopoda, Craterostigmomorpha). Zoomorphology 117, 49–52.
| Crossref | GoogleScholarGoogle Scholar |
Boyer S. L., Giribet G.
(2007) A new model Gondwanan taxon: systematics and biogeography of the harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi), with a taxonomic revision of genera from Australia and New Zealand. Cladistics 23, 337–361.
| Crossref | GoogleScholarGoogle Scholar |
Boyer S. L.,
Baker J. M., Giribet G.
(2007) Deep genetic divergencesin Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a wide-spread ‘mite harvestman’ defies DNA taxonomy. Molecular Ecology 16, 4999–5016.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Carcupino M.,
Fausto A. M.,
Ortega M. L. B.,
Zapparoli M., Mazzini M.
(1996) Spermatophore development and sperm ultrastructure in Craterostigmus tasmanianus (Chilopoda, Craterostigmomorpha). Zoomorphology 116, 103–110.
| Crossref |
Colgan D. J.,
McLauchlan A.,
Wilson G. D. F.,
Livingston S. P.,
Edgecombe G. D.,
Macaranas J.,
Cassis G., Gray M. R.
(1998) Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46, 419–437.
| Crossref | GoogleScholarGoogle Scholar |
Cook L. G., Crisp M. D.
(2005) Not so ancient: the extant crown group of Nothofagus represents a post-Gondwanan radiation. Proceedings of the Royal Society. Biological Sciences 272, 2535–2544.
| Crossref | GoogleScholarGoogle Scholar |
Crosby T. K.,
Dugdale J. S., Watt J. C.
(1976) Recording specimen localities in New Zealand: an arbitrary system of areas and codes defined. New Zealand Journal of Zoology 3, 69.
Edgecombe G. D., Giribet G.
(2003) Relationships of Henicopidae (Chilopoda: Lithobiomorpha): new molecular data, classification and biogeography. African Invertebrates 44, 13–38.
Edgecombe G. D., Giribet G.
(2004a) Adding mitochondrial sequence data (16S rRNA and cytochrome c oxidase subunit I) to the phylogeny of centipedes (Myriapoda, Chilopoda): an analysis of morphology and four molecular loci. Journal of Zoological Systematics and Evolutionary Research 42, 89–134.
| Crossref | GoogleScholarGoogle Scholar |
Edgecombe G. D., Giribet G.
(2004b) Molecular phylogeny of Australasian anopsobiine centipedes (Chilopoda: Lithobiomorpha). Invertebrate Systematics 18, 235–249.
| Crossref | GoogleScholarGoogle Scholar |
Edgecombe G. D., Giribet G.
(2006) A century later – a total evidence re-evaluation of the phylogeny of scutigeromorph centipedes (Myriapoda: Chilopoda). Invertebrate Systematics 20, 503–525.
| Crossref | GoogleScholarGoogle Scholar |
Ernst A.,
Rosenberg J.,
Mesibov R., Hilken G.
(2002) Sensilla coeloconica on the maxillipede of the centipede Craterostigmus tasmanianus Pocock, 1902 (Chilopoda, Craterostigmomorpha). Abhandlungen und Berichte des Naturkundemuseums Görlitz 74, 207–214.
Ernst A.,
Rosenberg J., Hilken G.
(2006) Structure and distribution of antennal sensillae in the centipede Craterostigmus tasmanianus Pocock, 1902 (Chilopoda, Craterostigmomorpha). Norwegian Journal of Entomology 53, 153–164.
Farris J. S.,
Källersjö M.,
Kluge A. G., Bult C.
(1994) Testing significance of incongruence. Cladistics 10, 315–319.
| Crossref | GoogleScholarGoogle Scholar |
Farris J. S.,
Albert V. A.,
Källersjö M.,
Lipscomb D., Kluge A. G.
(1996) Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99–124.
| Crossref | GoogleScholarGoogle Scholar |
Giribet G.
(2003) Stability in phylogenetic formulations and its relationship to nodal support. Systematic Biology 52, 554–564.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Giribet G., Edgecombe G. D.
(2006) The importance of looking at small-scale patterns when inferring Gondwanan biogeography: a case study of the centipede Paralamyctes (Chilopoda, Lithobiomorpha, Henicopidae). Biological Journal of the Linnean Society 89, 65–78.
| Crossref | GoogleScholarGoogle Scholar |
Giribet G.,
Carranza S.,
Riutort M.,
Baguñà J., Ribera C.
(1999) Internal phylogeny of the Chilopoda (Myriapoda, Arthropoda) using complete 18S rDNA and partial 28S rDNA sequences. Philosophical Transactions of the Royal Society of London. Series B 354, 215–222.
| Crossref |
Giribet G.,
Edgecombe G. D., Wheeler W. C.
(2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413, 157–161.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Hilken G.
(1998) Vergleich von Tracheensystemen unter phylogenetischem Aspekt. Verhandlungen des naturwissenschaftlichen Vereins in Hamburg 37, 5–94.
Jordan G. J.
(2001) An investigation of long-distance dispersal based on species native to both Tasmania and New Zealand. Australian Journal of Botany 49, 333–340.
| Crossref | GoogleScholarGoogle Scholar |
Knapp M.,
Mudaliar R.,
Havell D.,
Wagstaff S. J., Lockhart P. J.
(2007) The drowning of New Zealand and the problem of Agathis. Systematic Biology 56, 862–870.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Manton S. M.
(1965) The evolution of arthopodan locomotory mechanisms, Part 8. Functional requirements and body design in Chilopoda, together with a comparative account of their skeleto-muscular systems and an Appendix on a comparison between burrowing forces of annelids and chilopods and its bearing upon the evolution of the arthropodan haemocoel. Journal of the Linnean Society (Zoology) 46, 252–483.
McGlone M. S.
(2005) Goodbye Gondwana. Journal of Biogeography 32, 739–740.
| Crossref | GoogleScholarGoogle Scholar |
Mesibov R.
(1995) Distribution and ecology of the centipede Craterostigmus tasmanianus Pocock, 1902 (Chilopoda: Craterostigmomorpha: Craterostigmidae) in Tasmania. The Tasmanian Naturalist 117, 2–7.
Mickevich M. F., Farris J. S.
(1981) The implications of congruence in Menidia. Systematic Zoology 30, 351–370.
| Crossref | GoogleScholarGoogle Scholar |
Müller C. H. G., Meyer-Rochow V. B.
(2006) Fine structural description of the lateral ocellus of Craterostigmus tasmanianus Pocock, 1902 (Chilopoda: Craterostigmomorpha) and phylogenetic considerations. Journal of Morphology 267, 850–865.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Pocock R. I.
(1902) A new and annectant type of chilopod. The Quarterly Journal of Microscopical Science 45, 417–448.
Prunescu C.
(1965) Les systèmes genital et trachéal de Craterostigmus (Craterostigmomorpha, Chilopoda). Revue roumaine de Biologie. Série de Zoologie 10, 309–314.
Prunescu C.-C., Prunescu P.
(2006) Rudimentary supernumerary Malpighian tubules in the order Craterostigmomorpha Pocock, 1902. Norwegian Journal of Entomology 53, 113–118.
Regier J. C., Shultz J. W.
(2001) A phylogenetic analysis of Myriapoda (Arthropoda) using two nuclear protein-coding genes. Zoological Journal of the Linnean Society 132, 469–486.
| Crossref | GoogleScholarGoogle Scholar |
Regier J. C.,
Wilson H. M., Shultz J. W.
(2005) Phylogenetic analysis of Myriapoda using three nuclear protein-coding genes. Molecular Phylogenetics and Evolution 34, 147–158.
| PubMed |
Rosenberg J.,
Müller C. H. G., Hilken G.
(2006) Ultrastructural organization of the anal organs in the anal capsule of Craterostigmus tasmanianus Pocock, 1902 (Chilopoda, Craterostigmomorpha). Journal of Morphology 267, 265–272.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sanmartín I., Ronquist F.
(2004) Southern hemisphere biogeography inferred by event-based models: Plant versus animal patterns. Systematic Biology 53, 216–243.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sanmartín I.,
Wanntorp L., Winkworth R. C.
(2007) West Wind Drift revisited: testing for directional dispersal in the Southern Hemisphere using event-based tree fitting. Journal of Biogeography 34, 398–416.
| Crossref | GoogleScholarGoogle Scholar |
Shear W. A., Bonamo P. M.
(1988) Devonobiomorpha, a new order of centipeds (Chilopoda) from the Middle Devonian of Gilboa, New York State, USA, and the phylogeny of centiped orders. American Museum Novitates 2927, 1–30.
Trewick S. A.,
Paterson A. M., Campbell H. J.
(2007) Hello New Zealand. Journal of Biogeography 34, 1–6.
| Crossref | GoogleScholarGoogle Scholar |
Waters J. M., Craw D.
(2006) Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. Systematic Biology 55, 351–356.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wheeler W. C.
(1995) Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology 44, 321–331.
| Crossref | GoogleScholarGoogle Scholar |
Wheeler W. C.
(1996) Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12, 1–9.
| Crossref | GoogleScholarGoogle Scholar |
Wheeler W. C.
(2003) Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search. Cladistics 19, 261–268.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wirkner C. S., Pass G.
(2002) The circulatory system in Chilopoda: functional morphology and phylogenetic aspects. Acta Zoologica 83, 193–202.
| Crossref | GoogleScholarGoogle Scholar |