Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Allozyme and morphometric variability in the dogwhelk, Nucella heyseana (Gastropoda : Muricidae) from Russian and Japanese waters: evidence for a single species under different names

Yuri P. Kartavtsev A C , Nadezda I. Zaslavskaya A , Olga V. Svinyna A and Akihiro Kijima B
+ Author Affiliations
- Author Affiliations

A Institute of Marine Biology, Far East Branch of Russian Academy of Sciences, Vladivostok 690041, Russia.

B Tohoku University, Onagawa 986-2242, Japan.

C Corresponding author. Email: kartavtsev_yu48@hotmail.com

Invertebrate Systematics 20(6) 771-782 https://doi.org/10.1071/IS05051
Submitted: 18 October 2005  Accepted: 26 September 2006   Published: 15 December 2006

Abstract

A complicated issue of very variable shell morphology in dogwhelks has led to a detailed discussion and set of complex analyses based on the methods of biochemical genetics, molecular genetics, and morphometrics. In this investigation, 29 allozyme loci and five morphometric shell characters were analysed for six samples of Nucella heyseana (Dunker, 1882) from Sakhalin Island, Primorye (Russia) and Onagawa Bay (Japan). An unweighted pair group method with arithmetic mean dendrogram was constructed using genetic distances for the six populations of N. heyseana sampled, and when combined with an earlier study of N. freycinetti Deshayes, 1841, indicated that two separate species are present. However, the population genetic analysis in combination with multivariate analysis of variance, discriminant and factor analyses for morphometric traits lead us to conclude that all six samples taken from Russian and Japanese waters belong to a single species. The taxon, known in Japanese and Korean literature as N. freycinetti, is actually N. heyseana and N. freycinetti is the appropriate name for another species discovered earlier. For N. heyseana Nei’s minimal unbiased genetic distances were examined at three hierarchical levels: (1) within Onagawa Bay (Pacific coast of Honshu), Dm = 0.0059 ± 0.0056; (2) within the group of populations in Peter the Great Bay (Japan Sea, Russia), Dm = 0.0083 ± 0.0067 (Kartavtsev et al., 2000), and (3) within the whole area investigated in the north-western Pacific, Dm = 0.1550 ± 0.0209. Allele frequency heterogeneity and hierarchical variability showed that each bay contains a genetically distinct population of this species.

Additional keywords: cryptic species, enzyme loci, heterozygosity, invertebrate, taxonomy.


Acknowledgments

Our first thanks are to Mr Valery Duriev and Mrs Svetlana Durieva for help in obtaining the sample of whelks from Sakhalin Island. We are pleased to acknowledge Dr Bronwyn Innes, Mr Robert Gaede and Mr Jim Shroder for editing the manuscript. This work was partly supported by Russia State Programs ‘Integration’ (grant P0008/1194), by FEB RAS grant # 06-III-B-06–186 and US CRDF grant # RUXO-003-VL-06.


References


Afifi A. A., and Azen S. P. (1979). ‘Statistical Analysis. A Computer Oriented Approach.’ (Academic Press: New York, USA.)

Campbell C. A. (1978). Genetic divergence between populations of T. lamellosa (Gmelin). In ‘Marine Organisms: Genetics, Ecology and Evolution’. (Eds B. Battaglia and J. A. Beardmore.) pp. 57–170. (Plenum Press: New York, USA.)

Campton D. E., Utter F. M. (1985) Natural hybridization between steelhead trout (Salmo gairdneri) and coastal cutthroat trout (Salmo clarki clarki) in two Puget Sound streams. Canadian Journal of Fisheries and Aquatic Sciences 42, 110–119. open url image1

Choe B. L., Park J.-K. (1997) Description of muricid species (Gastropoda: Neogastropoda) collected from the coastal areas of South Korea. Korean Journal of Biological Sciences 7, 281–286. open url image1

Collins T. M., Frazer K., Palmer R. A., Vermeij G. J., Brown W. M. (1996) Evolutionary history in northern hemisphere Nucella (GASTROPODA, MURICIDAE): molecular, morphological, ecological and paleontological evidence. Evolution 50, 2287–2304.
Crossref | GoogleScholarGoogle Scholar | open url image1

Day A. J., Bayne B. L. (1988) Allozyme variation in populations of the dog-whelk Nucella lapillus from the south west peninsula of England. Marine Biology 99, 93–100.
Crossref | GoogleScholarGoogle Scholar | open url image1

Deshayes G. (1841) Mollusques. Magazine de Zoologie. Paris Serie 3, 27–48. open url image1

Dunker W. (1882) Index molluscorum maris Japonici conscriptus et tabulis iconum VI illustratus. Novitates Conchologicae Supplementum 7, 1–301. open url image1

Egorov R. V. (1992) Guide to recent mollusks of northern Eurasia. Ruthenica 2, 63–75. open url image1

Gaffney P. M., Scott T. M., Koehn R. K., Diehl W. J. (1990) Interrelationships of heterozygosity growth rate and heterozygote deficiencies in the coot clam Mulinia lateralis. Genetics 124, 687–699.
PubMed |
open url image1

Golikov A. N., and Kusakin O. G. (1978). ‘Shell Gastropod Mollusks of the Littoral Zone of the USSR Seas.’ (Nauka Publications: Leningrad, Russia.) [In Russian.]

Gosling E. M. (1992). Genetics of Mytilus. In ‘Chapter 7. The Mussel Mytilus: Ecology, Physiology, Genetics and Culture’. (Ed. E. Gosling.) pp. 309–382. (Elsevier Science Publishers: Amsterdam, The Netherlands.)

Grant W. S., Utter F. M. (1988) Genetic heterogeneity on different geographic scales in Nucella lamellosa. Malacologia 30, 275–287. open url image1

Johnson M., Black R. (1984) Pattern beneath the chaos: the effect of recruitment on genetic patchiness in an intertidal limpet. Evolution 38, 1371–1383.
Crossref | GoogleScholarGoogle Scholar | open url image1

Johnson M., Black R. (1991) Genetic subdivision of the intertidal snail Bembucum vittatum (Gastropoda: Littorinidae) varies with habitat in the Houtman Abrolhos Islands, Western Australia. Heredity 67, 205–213. open url image1

Kartavtsev Y. U. P. (1979). An estimation of balance nature of biochemical polymorphism. In ‘Biochemical and Population Genetics of Fishes’. (Institute of Cytology). (Ed. V. S. Kirpichnikov.) pp. 36–40. (USSR Academy of Science: Leningrad, Russia.) [In Russian.]

Kartavtsev Y. P., Soloviev A. A. (1993) SPECSTAT, computer software for the statistical data analysis in the field of allozyme genetics. Genetica 88, 79–82.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kartavtsev Y. P., Svinyna O. V. (2003) Allozyme markers and morphometric variability in the gastropod mollusk Nucella heyseana (Mollusca, Gastropoda) and their association with environmental change. Korean Journal of Genetics [In English.] 25, 391–402. open url image1

Kartavtsev Y. P., Zaslavskaya N. I. (1983) Allozyme polymorphism in a population of the common mussel Mytilus edulis L. (Mytilidae) from the Sea of Japan. Marine Biological Letters 4, 163–172. open url image1

Kartavtsev Y. P., Salmenkova E. A., Rubtsova G. A., Afanasiev K. A. (1990) The family analysis of allozyme variability and its relationships with body length and viability of progeny in pink salmon Oncorhynchus gorbuscha (Walb.). Genetica [In Russian, English translation.] 26, 1610–1619. open url image1

Kartavtsev Y. P., Sytnikov A. V., Nikiforov S. M., Chichvarkhin A. Y. (1998) Allozyme and morphometric variability in predatory gastropod mollusk Nucella heyseana (Mollusca, Gastropoda) in polluted and normal environment. Genetica [In Russian, English translation.] 34, 1425–1433. open url image1

Kartavtsev Y. P., Rybnikova I. G., Sytnikov A. V., Amachaeva E. Y., Svinyna O. V. (2000) Genetic and morphometric variability of gastropod mollusk Nucella heyseana (Mollusca, Gastropoda) in environmental optimum and pessimum. Genetica [In Russian, English translation.] 36, 1340–1347. open url image1

Koehn R. K., Milkman K., Mitton J. B. (1976) Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in the blue mussel Mytilus edulis. Evolution 30, 2–32.
Crossref | GoogleScholarGoogle Scholar | open url image1

Koehn R. K., Hall J. G., Innes D. J., Zera A. J. (1984) Genetic differentiation of Mytilus edulis in eastern North America. Marine Biology 79, 117–126.
Crossref | GoogleScholarGoogle Scholar | open url image1

Li C. C. (1955). ‘Population Genetics.’ (University of Chicago Press: Chicago, IL, USA.)

Marko P. B. (1998) Historical allopatry and the biogeography of speciation in the prosobranch snail genus Nucella. Evolution 52, 757–774.
Crossref | GoogleScholarGoogle Scholar | open url image1

Marko P. B., Palmer A. R., Vermeij G. J. (2003) Resurrection of Nucella ostrina (Gould, 1852), lectotype designation for N. emarginata (Deshayes, 1839), and molecular genetic evidence of Pleistocene speciation. The Veliger 46, 77–85. open url image1

McDonald J. H., Seed R., Koehn R. K. (1991) Allozymes and morphometric characters of three species of Mytilus in the northern and southern hemispheres Marine Biology 111, 323–333.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nei M. (1977) F-statistics and analysis of gene diversity in subdivided populations. Annals of Human Genetics 41, 225–233.
PubMed |
open url image1

Nei M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590. open url image1

Nei M. (1987). ‘Molecular Evolutionary Genetics.’ (Columbia University Press: New York, USA.)

Palmer A. R., Gayron S. D., Woodruff D. S. (1990) Reproductive, morphological, and genetic evidence for two cryptic species of northeastern Pacific Nucella. The Veliger 33, 325–338. open url image1

Raymond M., Rousset F. (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity 86, 248–249. open url image1

Rohlf F. J., and Sokal R. R. (1981). ‘Statistical Tables.’ (W. H. Freeman and Co.: San Francisco, CA, USA.)

Rohlf F. J. (1988). NTSYS-pc; numerical taxonomy and system of multivariate statistical analysis programs (Version.1.40/440). Applied Biostatatistic Incorporation, Department of Ecology and Evolution, State University of New York. Exeter Publishing Ltd., New York, USA.

Rokitsky P. F. (1967). ‘Biological Statistics.’ (Vischaya Schcola: Minsk, Belarus.)

Skibinski D. O. F., Beardmore J. A., Cross T. F. (1983) Aspects of the population genetics of Mytilus (Mytilidae: Mollusca) in the British Isles. Biological Journal of the Linnean Society 19, 173–183. open url image1

Swofford D. L., Selander R. B. (1981) Biosys-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. The Journal of Heredity 72, 281–283. open url image1

Tatarenkov A., Johannesson K. (1994) Habitat related allozyme variation on a microgeographic scale in the marine snail Littorina mariae (Prosobranchia: Littorinacea) Biological Journal of the Linnean Society 53, 105–125.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tracey M. L., Ballet N. F., Gravem C. D. (1975) Excess of allozyme homozygosity and breeding population structure in the mussel Mytilus californianus. Marine Biology 32, 303–311.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tsuchiya K. (2000). Marine mollusk in Japan. (Ed. T. Okutani.) pp. 365–421. (Tokai University Press: Tokyo, Japan.)

Ward R. D. (1989). Molecular population genetics of marine organisms. In ‘Reproduction, Genetics and Distribution of Marine Organisms’. (Eds J. S. Ryland and P. A. Tyler.) pp. 235–249. (Olsen and Olsen: Fredensborg, Denmark.)

Ward R. D. (1990) Biochemical genetic variation in genus Littorina (Prosobranchia: Mollusca). Hydrobiologia 193, 53–69.
Crossref | GoogleScholarGoogle Scholar | open url image1

Workman P. L., Niswander J. D. (1970) Population studies on the Southwestern Indian tribes. II. Local genetic differentiation in the Papago. American Journal of Human Genetics 1, 24–29. open url image1

Zaslavskaya N. I. (1989) Genetic variability of four Pacific species of Littorinids (Mollusca: Littorinidae). Genetica [In Russian, English translation.] 15, 1636–1644. open url image1

Zaslavskaya N. I., Kolotuchina N. K. (1999) Genetic variation of the gastropod Nucella heyseana. Biologiya Morya [In Russian, English translation.] 25, 113–116. open url image1

Zaslavskaya N. I., Kolotuchina N. K. (2003) Genetic and morphological differentiation between two species of Nucella (Gastropoda: Muricidae) in the northwestern Pacific. The Journal of Molluscan Studies 69, 381–385.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zaykin D. V., Pudovkin A. I. (1991) Program MULTTEST: The calculation of measures of a statistical significance under multiple testing. Genetica 27, 2034–2038. open url image1

Zouros E. (1987). On the relation between heterozygosity and heterosis: an evaluation of the evidence from marine mollusks. In ‘Isozymes: Current Topics in Biological and Medical Research. Volume 15’. (Eds M. C. Ruttazi, J. S. Scandalios and G. S. Whitt.) pp. 255–270. (Alan Liss: New York, USA.)

Zouros E., Foltz D. W. (1984) Minimal selection requirements for the correlation between heterozygosity and growth, and for the deficiency of heterozygotes, in oyster populations. Developmental Genetics 4, 393–405.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zouros E., and Foltz D. W. (1987). The use of allelic isozyme variation for the study of heterosis. In ‘Isozymes: Current Topics in Biological and Medical Research. Volume 13’. (Eds M. C. Ruttazi, J. S. Scandalios and G. S. Whitt.) pp. 1–59. (Alan Liss: New York, USA.) [In Russian, English translation.]