Panmixia and local endemism: a revision of the Eubranchus rupium species complex with a description of new species
Darya Y. Grishina A * , Dimitry M. Schepetov B , Tatiana I. Antokhina C , Manuel António E. Malaquias D E , Ángel Valdés F and Irina A. Ekimova AA
B
C
D
E
F
Abstract
Species of the genus Eubranchus Forbes, 1838 (Mollusca: Gastropoda: Nudibranchia) are common faunistic elements of boreal benthic ecosystems, associated with hydroid communities. Recent studies have suggested that the widely distributed trans-Arctic E. rupium (Møller, 1842) constitutes a complex of at least three candidate species, but the detailed taxonomy of the complex remains unresolved. The purpose of the present paper is to conduct an integrative taxonomic study including molecular genetic methods (a phylogenetic analysis using COI, 16S rRNA and histone H3 with application of species delimitation methods) and morphological study (light and scanning electron microscopy) of E. rupium and closely related species. The specific aims of this study were to establish the species boundaries, morphological variability, and the phylogeographic structure within this group. The phylogeographic analysis included a TCS-based network analysis, an analysis of molecular variance (AMOVA), divergence time estimations, and ancestral area reconstructions. We demonstrate that specimens initially identified as E. rupium included three distinctive species: the nominal E. rupium with an amphiboreal range, the new species Eubranchus novik sp. nov. from the Sea of Japan, for which a taxonomic description is provided in this paper, and Eubranchus sp. from the northern Kuril Islands, which requires the collection and study of additional material for formal description. Our results confirm the amphiboreal distribution of E. rupium, as no geographic structure was found across Pacific, Arctic and Atlantic populations, and the results of the AMOVA analysis showed no differences between groups of samples from different geographic regions. The divergence of the ‘Eubrancus rupium species complex’ is estimated from the late Miocene or the Miocene–Pliocene boundary to the late Pliocene. It is hypothesised that the most probable ancestral region for the Eubranchus rupium species complex is the north-western Pacific, and the subsequent speciation likely occurred due to dispersal followed by allopatric speciation.
ZooBank: urn:lsid:zoobank.org:pub:228E0C46-0BF7-4DDD-9C00-67B50E298D65
Keywords: amphiboreal species, ancestral area reconstruction, biodiversity, divergence time estimation, Mollusca, nudibranch, phylogenetics, phylogeography, population structure, species complex.
References
Aerts LAM (1994) Seasonal distribution of nudibranchs in the southern Delta area, SW Netherlands. Journal of Molluscan Studies 60(2), 129-139.
| Crossref | Google Scholar |
Baba K (1960) Two new species of the genus Eubranchus from Japan (Nudibranchia–Eolidacea). Publications of the Seto Marine Biological Laboratory 8(2), 299-302.
| Google Scholar |
Bergh R (1868) Anatomiske Bidrag til Kundskab om Aeolidierne. Det Kongelige Danske Videnskabernes Selskabs Skrifter. Femte Raekke, Naturvidenskabelig og Mathematisk Afdeling Kjøbenhavn 7, 139-316 [In Danish].
| Google Scholar |
Carmona L, Pola M, Gosliner TM, Cervera JL (2013) A tale that morphology fails to tell: a molecular phylogeny of Aeolidiidae (Aeolidida, Nudibranchia, Gastropoda). PLoS ONE 8(5), e63000.
| Crossref | Google Scholar | PubMed |
Carmona L, Pola M, Gosliner TM, Cervera JL (2014) The end of a long controversy: systematics of the genus Limenandra (Mollusca: Nudibranchia: Aeolidiidae). Helgoland Marine Research 68, 37-48.
| Crossref | Google Scholar |
Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17(4), 540-552.
| Crossref | Google Scholar |
Cella K, Carmona L, Ekimova I, Chichvarkhin A, Schepetov D, Gosliner TM (2016) A radical solution: the phylogeny of the nudibranch family Fionidae. PLoS ONE 11(12), e0167800.
| Crossref | Google Scholar | PubMed |
Chaban EM, Ekimova IA, Schepetov DM, Chernyshev AV (2019) Meloscaphander grandis (Heterobranchia: Cephalaspidea), a deep-water species from the North Pacific: redescription and taxonomic remarks. Zootaxa 4646(2), zootaxa-4646.
| Crossref | Google Scholar | PubMed |
Colgan DJ, McLauchlan A, Wilson GD, Livingston SP, Edgecombe GD, Macaranas J, Cassis G, Gray MR (1998) Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46(5), 419-437.
| Crossref | Google Scholar |
Clement M, Snell Q, Walker P, Posada D, Crandall K (2004) TCS: estimating gene genealogies. In ‘Proceedings of the 16th International Parallel and Distributed Processing Symposium (IPDPS’02)’, 15–19 April 2002, Fort Lauderdale, FL, USA. (IEEE) 10.1109/IPDPS.2002.1016585
Cornils A, Wend-Heckmann B, Held C (2017) Global phylogeography of Oithona similis s.l. (Crustacea, Copepoda, Oithonidae) – a cosmopolitan plankton species or a complex of cryptic lineages? Molecular Phylogenetics and Evolution 107, 473-485.
| Crossref | Google Scholar | PubMed |
Coulson MW, Marshall HD, Pepin P, Carr SM (2006) Mitochondrial genomics of gadine fishes: implications for taxonomy and biogeographic origins from whole-genome data sets. Genome 49(9), 1115-1130.
| Crossref | Google Scholar | PubMed |
Cunha TJ, Fernández-Simón J, Petrula M, Giribet G, Moles J (2023) Photographic checklist, DNA barcoding, and new species of sea slugs and snails from the Faafu Atoll, Maldives (Gastropoda: Heterobranchia and Vetigastropoda). Diversity 15(2), 219.
| Crossref | Google Scholar |
Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M, Claverie J-M, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research 36(Suppl. 2), W465-W469.
| Crossref | Google Scholar | PubMed |
Derjugin KM (1924) К фауне Кольского залива: Работы на Мурманской биологической станции в 1921 году [The fauna of Kola Bay: works on the Murman Biological Station in 1921]. Труды Ленинградского общества естествоиспытателей [Proceedings of the Leningrad Society of Naturalists] 54(1), 1-16 [In Russian].
| Google Scholar |
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5), 1792-1797.
| Crossref | Google Scholar | PubMed |
Edmunds M (2015) Opisthobranchiate Mollusca from Ghana: Flabellinidae, Piseinotecidae, Eubranchidae & Embletoniidae. Journal of Conchology 42(2), 105-124.
| Google Scholar |
Edmunds M, Kress A (1969) On the European species of Eubranchus [Mollusca Opisthobranchia]. Journal of the Marine Biological Association of the United Kingdom 49(4), 879-912.
| Crossref | Google Scholar |
Ekimova I, Valdés Á, Chichvarkhin A, Antokhina T, Lindsay T, Schepetov D (2019) Diet-driven ecological radiation and allopatric speciation result in high species diversity in a temperate–cold water marine genus Dendronotus (Gastropoda: Nudibranchia). Molecular Phylogenetics and Evolution 141, 106609.
| Crossref | Google Scholar | PubMed |
Ekimova IA, Mikhlina AL, Vorobyeva OA, Antokhina TI, Tambovtseva VG, Schepetov DM (2021) Young but distinct: description of Eubranchus malakhovi sp. n. a new, recently diverged nudibranch species (Gastropoda: Heterobranchia) from the Sea of Japan. Invertebrate Zoology 18(3), 197-222.
| Crossref | Google Scholar |
Ekimova I, Valdés Á, Malaquias MAE, Rauch C, Chichvarkhin A, Mikhlina A, Antokhina T, Chichvarkhina O, Schepetov D (2022a) High-level taxonomic splitting in allopatric taxa causes confusion downstream: a revision of the nudibranch family Сoryphellidae. Zoological Journal of the Linnean Society 196(1), 215-249.
| Crossref | Google Scholar |
Ekimova IA, Vorobyeva OA, Mikhlina AL, Schepetov DM, Vortsepneva EV, Antokhina TI, Malakhov VV (2022b) Nematocyst sequestration within the family Fionidae (Gastropoda: Nudibranchia) considering ecological properties and evolution. Frontiers in Zoology 19(1), 29.
| Crossref | Google Scholar | PubMed |
Ekimova IA, Nikitenko E, Stanovova MV, Schepetov DM, Antokhina TI, Malaquias MAE, Valdés Á (2023) Unity in diversity: morphological and genetic variability, integrative systematics, and phylogeography of the widespread nudibranch mollusc Onchidoris muricata. Systematics and Biodiversity 21(1),.
| Crossref | Google Scholar |
Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10(3), 564-567.
| Crossref | Google Scholar | PubMed |
Folmer O, Hoeh WR, Black MB, Vrijenhoek RC (1994) Conserved primers for PCR amplification of mitochondrial DNA from different invertebrate phyla. Molecular Marine Biology and Biotechnology 3(5), 294-299.
| Google Scholar | PubMed |
Giribet G, Carranza S, Baguñà J, Riutort M, Ribera C (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13(1), 76-84.
| Crossref | Google Scholar | PubMed |
Goodheart JA, Bazinet AL, Valdés Á, Collins AG, Cummings MP (2017) Prey preference follows phylogeny: evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). BMC Evolutionary Biology 17(1), 221.
| Crossref | Google Scholar | PubMed |
Gosliner TM, Bertsch H (2017) Two new species of nudibranch mollusks from the tropical eastern Pacific of Mexico. Proceedings of the California Academy of Sciences 64(6), 117-130.
| Google Scholar |
Grishina DY, Schepetov DM, Ekimova IA (2022) Hidden beauty of the north: a description of Eubranchus scintillans sp. n. (Gastropoda: Nudibranchia) from the Barents Sea and north-east Atlantic. Invertebrate Zoology 19(4), 351-368.
| Crossref | Google Scholar |
Grishina DY, Antokhina TI, Ekimova IA (2023) A new species of the genus Eubranchus (Gastropoda: Nudibranchia) from Vietnamese coastal waters. Новый вид рода Eubranchus (Gastropoda: Nudibranchia) из прибрежных вод Вьетнама. Ruthenica, Russian Malacological Journal 33(1), 1-8 [In English with title and abstract in English and Russian].
| Crossref | Google Scholar |
Gurjanova EF (1924) Биоценоз ламинарий Кольского залива [Biocenosis of laminaria of the Kola Bay]. Труды Петроградского общества естествоиспытателей [Proceedings of the Saint Petersburg Imperial Society of Natural Scientists] 53(2), 141-172 [In Russian].
| Google Scholar |
Hallas JM, Simison WB, Gosliner TM (2016) Dating and biogeographical patterns in the sea slug genus Acanthodoris Gray, 1850 (Mollusca, Gastropoda, Nudibranchia). Molecular Phylogenetics and Evolution 97, 19-31.
| Crossref | Google Scholar | PubMed |
Harper KE, Scheinberg LA, Boyer KE, Sotka EE (2022) Global distribution of cryptic native, introduced and hybrid lineages in the widespread estuarine amphipod Ampithoe valida. Conservation Genetics 23(4), 791-806.
| Crossref | Google Scholar |
Hebert PD, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London – B. Biological Sciences 270(1512), 313-321.
| Crossref | Google Scholar | PubMed |
Hermosillo A, Valdés Á (2007) Five new species of aeolid nudibranchs (Mollusca, Opisthobranchia) from the tropical eastern Pacific. American Malacological Bulletin 22(1), 119-137.
| Crossref | Google Scholar |
Hirano Y, Hirano Y (1990) Feeding segregation of Eubranchus misakiensis Baba, 1960 and E. horii Baba, 1960 (Nudibranchia: Aeolidacea) in the Okhotsk Sea, northern Japan with range extensions for both species. Venus (Japanese Journal of Malacology) 49(2), 146-149.
| Crossref | Google Scholar |
Imbrie J, Berger A, Boyle EA, Clemens SC, Duffy A, Howard WR, Howard WR, Kukla G, Kutzbach J, Martinson DG, McIntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1993) On the structure and origin of major glaciation cycles 2. The 100,000‐year cycle. Paleoceanography 8(6), 699-735.
| Crossref | Google Scholar |
Ivanova N, Grainger C, Hajibabaei M (2006a) Glass fiber DNA extraction: a new inexpensive method for high throughput DNA isolation. In ‘Advances’, Methods Release 1, 3 November 2006. (Canadian Centre for DNA Barcoding) Available at https://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_Advances_Methods_Release_No1_Nov3rd_2006.pdf
Ivanova NV, Dewaard JR, Hebert PDN (2006b) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes 6(4), 998-1002.
| Crossref | Google Scholar |
Kelly RP, Eernisse DJ (2008) Reconstructing a radiation: the chiton genus Mopalia in the north Pacific. Invertebrate Systematics 22(1), 17-28.
| Crossref | Google Scholar |
Kienberger K, Carmona L, Pola M, Padula V, Gosliner TM, Cervera JL (2016) Aeolidia papillosa (Linnaeus, 1761) (Mollusca: Heterobranchia: Nudibranchia), single species or a cryptic species complex? A morphological and molecular study. Zoological Journal of the Linnean Society 177(3), 481-506.
| Crossref | Google Scholar |
Korshunova T, Martynov A, Picton B (2017) Ontogeny as an important part of integrative taxonomy in tergipedid aeolidaceans (Gastropoda: Nudibranchia) with a description of a new genus and species from the Barents Sea. Zootaxa 4324(1), 1-22.
| Crossref | Google Scholar |
Korshunova T, Malmberg K, Prkić J, Petani A, Fletcher K, Lundin K, Martynov A (2020) Fine-scale species delimitation: speciation in process and periodic patterns in nudibranch diversity. ZooKeys 917, 15.
| Crossref | Google Scholar | PubMed |
Laakkonen HM, Lajus DL, Strelkov P, Väinölä R (2013) Phylogeography of amphi-boreal fish: tracing the history of the Pacific herring Clupea pallasii in north-east European seas. BMC Evolutionary Biology 13, 1-16.
| Crossref | Google Scholar |
Laakkonen HM, Strelkov P, Väinölä R (2015) Molecular lineage diversity and inter‐oceanic biogeographical history in Hiatella (Mollusca, Bivalvia). Zoologica Scripta 44(4), 383-402.
| Crossref | Google Scholar |
Laakkonen HM, Hardman M, Strelkov P, Väinölä R (2021) Cycles of trans‐Arctic dispersal and vicariance, and diversification of the amphi‐boreal marine fauna. Journal of Evolutionary Biology 34(1), 73-96.
| Crossref | Google Scholar | PubMed |
Lambert WJ (1991) Coexistence of hydroid-eating nudibranchs: recruitment and non-equilibrial patterns of occurrence. Journal of Molluscan Studies 57(Suppl. Part 4), 35-47.
| Crossref | Google Scholar |
Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6(9), 1110-1116.
| Crossref | Google Scholar |
Lemche H (1935) On some nudibranchiate gastropods from the northern Atlantic. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening 99, 131-148.
| Google Scholar |
Martynov AV (1998) Заднежаберные моллюски семейства Eubranchidae: таксономическая структура и два новых вида из Японского моря [Opisthobranch molluscs (Gastropoda: Opisthobranchia) of the family Eubranchidae: taxonomy and two new species from the Sea of Japan]. Зоологический журнал [Journal of Zoology] 77(7), 763-777 [In Russian].
| Google Scholar |
Martynov AV (2006) Clade Nudibranchia. In ‘Морские и солоноватоводные брюхоногие моллюски России и сопредельных стран: иллюстрированный каталог [Marine and brackish water Gastropoda of Russia and adjacent countries: an illustrated catalogue]’. (Eds YI Kantor, AV Sysoev) pp. 268–294. (KMK Scientific Press Ltd: Moscow, Russia)
Martynov AV, Sanamyan NP, Korshunova TA (2015) Обзор фауны заднежаберных моллюсков дальневосточных морей России: Pleurobranchomorpha, Doridida и Nudibranchia [Review of the fauna of the Opisthobranch molluscs of the Russian Far Eastern seas: Pleurobranchomorpha, Doridida and Nudibranchia]. Вестник Камчатского государственного технического университета [Bulletin of Kamchatka State Technical University] 34, 62-87 [In Russian].
| Google Scholar |
Matzke NJ (2013) Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model testing. Frontiers of Biogeography 5(4), 242-248.
| Crossref | Google Scholar |
Mehrotra R, Arnold S, Wang A, Chavanich S, Hoeksema BW, Caballer M (2020) A new species of coral-feeding nudibranch (Mollusca: Gastropoda) from the Gulf of Thailand. Marine Biodiversity 50(3), 36.
| Crossref | Google Scholar |
Mikhlina A, Ekimova I, Vortsepneva E (2020) Functional morphology and post-larval development of the buccal complex in Eubranchus rupium (Nudibranchia: Aeolidida: Fionidae). Zoology 143, 125850.
| Crossref | Google Scholar | PubMed |
Molodtsova TN, Moskalenko VN, Lipukhin EV, Antokhina TI, Ananeva MS, Simakova UV (2023) Cerianthus lloydii (Ceriantharia: Anthozoa: Cnidaria): new status and new perspectives. Biology 12(9), 1167.
| Crossref | Google Scholar | PubMed |
MolluscaBase (2023) Eubranchus Forbes, 1838. In ‘WoRMS: World Register of Marine Species’. (Flanders Marine Institute) Available at https://www.marinespecies.org/aphia.php?p=taxdetails&id=137954
Nagale P, Apte D (2014) Intertidal hydroids (Cnidaria: Hydrozoa: Hydroidolina) from the Gulf of Kutch, Gujarat, India. Marine Biodiversity Records 7, e116.
| Crossref | Google Scholar |
Nikula R, Strelkov P, Väinölä R (2007) Diversity and trans-Arctic invasion history of mitochondrial lineages in the North Atlantic Macoma balthica complex (Bivalvia: Tellinidae). Evolution 61(4), 928-941.
| Crossref | Google Scholar | PubMed |
Nygren A, Parapar J, Pons J, Meißner K, Bakken T, Kongsrud JA, Oug E, Gaeva D, Sikorski A, Johansen RA, Hutchings PA, Lavesque N, Capa M (2018) A mega-cryptic species complex hidden among one of the most common annelids in the North East Atlantic. PLoS ONE 13(6), e0198356.
| Crossref | Google Scholar | PubMed |
Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A (2010) How many bootstrap replicates are necessary? Journal of Computational Biology 17(3), 337-354.
| Crossref | Google Scholar | PubMed |
Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55(4), 595-609.
| Crossref | Google Scholar | PubMed |
Puillandre N, Brouillet S, Achaz G (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21(2), 609-620.
| Crossref | Google Scholar | PubMed |
Pyron RA, Burbrink FT (2010) Hard and soft allopatry: physically and ecologically mediated modes of geographic speciation. Journal of Biogeography 37(10), 2005-2015.
| Crossref | Google Scholar |
Reid DG (1990) Trans-Arctic migration and speciation induced by climatic change: the biogeography of Littorina (Mollusca: Gastropoda). Bulletin of Marine Science 47(1), 35-49.
| Google Scholar |
Roginskaya IS (1962) Кладки голожаберных моллюсков Белого моря [Nudibranchs’ egg masses of the White Sea]. Труды Беломорской биологической станции МГУ [Proceedings of the White Sea Biological Station of MSU] 1, 201-214 [In Russian].
| Google Scholar |
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3), 539-542.
| Crossref | Google Scholar | PubMed |
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34(12), 3299-3302.
| Crossref | Google Scholar | PubMed |
Riginos C, Cunningham CW (2005) Invited review: local adaptation and species segregation in two mussel (Mytilus edulis × Mytilus trossulus) hybrid zones. Molecular Ecology 14(2), 381-400.
| Crossref | Google Scholar | PubMed |
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9), 1312-1313.
| Crossref | Google Scholar | PubMed |
Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4(1), vey016.
| Crossref | Google Scholar | PubMed |
Tamsouri N, Carmona L, Moukrim A, Cervera JL (2015) Description of Eubranchus amazighi sp. nov. (Gastropoda, Heterobranchia) from the Atlantic Coast of Morocco. American Malacological Bulletin 33(1), 110-113.
| Crossref | Google Scholar |
Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38(7), 3022-3027.
| Crossref | Google Scholar | PubMed |
Vences M, Miralles A, Brouillet S, Ducasse J, Fedosov A, Kharchev V, Kumari S, Patmanidis S, Puillandre N, Scherz MD, Kostadinov I, Renner SS (2021) iTaxoTools 0.1: kickstarting a specimen-based software toolkit for taxonomists. Megataxa 6, 77-92.
| Crossref | Google Scholar |
Vermeij GJ (1991) Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17(3), 281-307.
| Crossref | Google Scholar |
Wares JP (2001) Biogeography of Asterias: North Atlantic climate change and speciation. The Biological Bulletin 201(1), 95-103.
| Crossref | Google Scholar | PubMed |
Webb T, III, Bartlein PJ (1992) Global changes during the last 3 million years: climatic controls and biotic responses. Annual Review of Ecology and Systematics 23, 141-173.
| Crossref | Google Scholar |
Wenne R, Zbawicka M, Bach L, Strelkov P, Gantsevich M, Kukliński P, Kijewski T, McDonald JH, Sundsaasen KK, Árnyasi M, Lien S, Kaasik A, Herkül K, Kotta J (2020) Trans-Atlantic distribution and introgression as inferred from single nucleotide polymorphism: mussels Mytilus and environmental factors. Genes 11(5), 530.
| Crossref | Google Scholar | PubMed |
Whiting MF, Carpenter JC, Wheeler QD, Wheeler WC (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46(1), 1-68.
| Crossref | Google Scholar | PubMed |
Yu Y, Harris AJ, Blair C, He X (2015) RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution 87, 46-49.
| Crossref | Google Scholar | PubMed |
Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29(22), 2869-2876.
| Crossref | Google Scholar | PubMed |