Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Resolving the taxonomic identities and genetic structure of two cryptic Platynereis Kinberg species from South Africa

Jyothi Kara https://orcid.org/0000-0003-2961-1713 A , Cinthya S. G. Santos https://orcid.org/0000-0003-2182-0801 B , Angus H. H. Macdonald C and Carol A. Simon https://orcid.org/0000-0001-9613-5222 A D
+ Author Affiliations
- Author Affiliations

A Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.

B Departamento de Biologia Marinha, Programa de Pós-Graduação em Biologia Marinha e Ambientes Costeiros, Universidade Federal Fluminense, Rua Outeiro de São João Batista, s/n, CEP: 24210-510, Niterói, Rio de Janeiro, Brazil.

C School of Life Sciences, University of KwaZulu–Natal, Private Bag X54001, Durban, 4000, South Africa.

D Corresponding author. Email: csimon@sun.ac.za

Invertebrate Systematics 34(6) 618-636 https://doi.org/10.1071/IS19072
Submitted: 12 December 2019  Accepted: 28 April 2020   Published: 14 August 2020

Abstract

The perceived cosmopolitanism of polychaete worms could be an artefact of historical factors such as poor original species descriptions, lack of type material and the European taxonomic bias, to name a few. Thus, it is possible that several cosmopolitan species hide complexes of cryptic and pseudocryptic species. Two putative cosmopolitan species, Platynereis dumerilii and Platynereis australis, collected in South Africa were investigated here (1) to determine whether the South African taxa are conspecific with the morphologically identical taxa from France and New Zealand (the respective type localities of P. dumerilii and P. australis), (2) to compare the South African species morphometrically to determine whether their morphological characters are reliable enough to separate them, and (3) to investigate whether these species have geographically structured populations along the coast of South Africa. Molecular data (COI and ITS1) confirm that P. dumerilii and P. australis do not occur in South Africa. Instead, the South African taxon formerly thought to be Platynereis dumerilii is new and is described here as Platynereis entshonae, sp. nov.; the identity of the other South African species is currently unresolved and is treated here as Platynereis sp. Surprisingly, Platynereis massiliensis (type locality: Marseilles) nested within the South African Platynereis sp. clade but, since it is part of a cryptic species complex in the Mediterranean, the name is considered doubtful. Morphological characters traditionally used to define these South African Platynereis species are not reliable as predefined morphological groupings do not match phylogenetic clades and principal component scores revealed no separation in morphological characters that could distinguish between them. Haplotype networks and phylogenetic trees revealed that P. entshonae, sp. nov. and Platynereis sp. have geographically structured populations along the South African coast.

http://zoobank.org/urn:lsid:zoobank.org:pub:6E36A210-9E48-430F-8A93-EDC27F0C5631

Additional keywords: cosmopolitan, phylogeny, population genetics, taxonomy.


References

Allen, J. C., and Griffiths, C. L. (1981). The fauna and flora of a kelp bed canopy. South African Journal of Zoology 16, 80–84.
The fauna and flora of a kelp bed canopy.Crossref | GoogleScholarGoogle Scholar |

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.
Basic local alignment search tool.Crossref | GoogleScholarGoogle Scholar | 2231712PubMed |

Audouin, J., and Milne Edwards, H. (1833). Classification des Annélides et description de celles qui habitent les côtes de la France. Annales des Sciences Naturelles, Paris 28, 187–247.
Classification des Annélides et description de celles qui habitent les côtes de la France.Crossref | GoogleScholarGoogle Scholar |

Augener, H. (1913). Polychaeta I. Errantia. In ‘Die Fauna Südwest-Australiens. Ergebnisse der Hamburger südwest-australischen Forschungsreise 1905’. (Eds W. Michaelsen and R. Hartmeyer.) Vol. 4(5), pp. 65–304, plates II–III. (Gustav Fischer: Jena, Germany.)

Bennett, B., Griffiths, C. L., and Penrith, M. L. (1983). The diets of littoral fish from the Cape Peninsula. South African Journal of Zoology 18, 343–352.
The diets of littoral fish from the Cape Peninsula.Crossref | GoogleScholarGoogle Scholar |

Bortolus, A. (2008). Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. Ambio 37, 114–118.
Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology.Crossref | GoogleScholarGoogle Scholar | 18488554PubMed |

Burg, T. M., Trites, A. W., and Smith, M. J. (1999). Mitochondrial and microsatellite DNA analyses of harbour seal population structure in the northeast Pacific Ocean. Canadian Journal of Zoology 77, 930–943.
Mitochondrial and microsatellite DNA analyses of harbour seal population structure in the northeast Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Calosi, P., Rastrick, S. P. S., Lombardi, C., de Guzman, H. J., Davidson, L., Jahnke, M., Giangrande, A., Hardege, J. D., Schulze, A., Spicer, J. I., and Gambi, M.-C. (2013). Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 368, 20120444.
Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system.Crossref | GoogleScholarGoogle Scholar | 23980247PubMed |

Canete, J. I., Cardenas, C. A., Palacios, M., and Barria, R. (2013). Presencia de agregaciones reproductivas pelagicas del poliqueto Platynereis australis (Schmarda, 1861) (Nereididae) en aguas someras subantarticas de Magallanes, Chile. Latin American Journal of Aquatic Research 41, 170–176.
Presencia de agregaciones reproductivas pelagicas del poliqueto Platynereis australis (Schmarda, 1861) (Nereididae) en aguas someras subantarticas de Magallanes, Chile.Crossref | GoogleScholarGoogle Scholar |

Carr, C. M., Hardy, S. M., Brown, T. M., Macdonald, T. A., and Hebert, D. D. N. (2011). A tri-oceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes. PLoS One 6, e22232.
A tri-oceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes.Crossref | GoogleScholarGoogle Scholar | 21829451PubMed |

Darling, J. A., and Carlton, J. T. (2018). A framework for understanding marine cosmopolitanism in the Anthropocene. Frontiers in Marine Science 5, 293.
A framework for understanding marine cosmopolitanism in the Anthropocene.Crossref | GoogleScholarGoogle Scholar | 31019910PubMed |

Day, J. H. (1953). The polychaet fauna of South Africa. Part 2. Errant species from Cape shores and estuaries. Annals of the Natal Museum 12, 397–441.

Day, J. H. (1960). The polychaet fauna of South Africa. Part 5. Errant species dredged off Cape coasts. Annals of the South African Museum 45, 261–373.

Day, J. H. (1967). ‘A Monograph on the Polychaeta of Southern Africa.’ (The British Museum of Natural History: London, UK.)

de Leon-Gonzalez, J. A., Slis-Weiss, V., and Valadez-Rocha, V. (2001). Two new species of Platynereis (Polychaeta: Nereididae) from eastern Mexican shores. Proceedings of the Biological Society of Washington 114, 389–395.

DeBiasse, M. B., Nelson, B. J., and Hellberg, M. E. (2014). Evaluating summary statistics used to test for incomplete lineage sorting: mito-nuclear discordance in the reef sponge Callyspongia vaginalis. Molecular Ecology 23, 225–238.
Evaluating summary statistics used to test for incomplete lineage sorting: mito-nuclear discordance in the reef sponge Callyspongia vaginalis.Crossref | GoogleScholarGoogle Scholar | 24283627PubMed |

Fauvel, P. (1921). Annélides polychètes de Madagascar, du Muséum R. d’Histoire Naturelle recueillies par M. le Dr. W. Kaudern en 1912. Arkiv för Zoologi 13, 1–33.

Fauvel, P. (1923). Polychetes Errantes. Fauna de France 5, 1–488.

Fischer, A., and Dorresteijn, A. (2004). The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. BioEssays 26, 314–325.
The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle.Crossref | GoogleScholarGoogle Scholar | 14988933PubMed |

Fischer, A. H. L., Henrich, T., and Arendt, D. (2010). The normal development of Platynereis dumerilii (Nereididae, Annelida). Frontiers in Zoology 7, 31.
The normal development of Platynereis dumerilii (Nereididae, Annelida).Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates.Crossref | GoogleScholarGoogle Scholar | 7881515PubMed |

Gambi, M. C., Zupo, V., Buia, M. C., and Mazzella, L. (2000). Feeding ecology of Platynereis dumerilii (Audouin & Milne-Edwards) in the seagrass Posidonia oceanica system: the role of the epiphytic flora (Polychaeta, Nereididae). Ophelia 53, 189–202.
Feeding ecology of Platynereis dumerilii (Audouin & Milne-Edwards) in the seagrass Posidonia oceanica system: the role of the epiphytic flora (Polychaeta, Nereididae).Crossref | GoogleScholarGoogle Scholar |

Giangrande, A. (1988). Polychaete zonation and its relation to algal distribution down a vertical cliff in the western Mediterranean (Italy): a structural analysis. Journal of Experimental Marine Biology and Ecology 120, 263–276.
Polychaete zonation and its relation to algal distribution down a vertical cliff in the western Mediterranean (Italy): a structural analysis.Crossref | GoogleScholarGoogle Scholar |

Glasby, J. C., Wei, N. V., and Gibb, K. S. (2013). Cryptic species of Nereididae (Annelida: Polychaeta) on Australian coral reefs. Invertebrate Systematics 27, 245–264.
Cryptic species of Nereididae (Annelida: Polychaeta) on Australian coral reefs.Crossref | GoogleScholarGoogle Scholar |

Grube, A. (1866). Beschreibungen neuer von der Novara-Expedition mitgebrachter Anneliden und einer neuen Landplanarie. Verhandlungen der Kaiserlich-Königlichen Zoologisch-Botanischen Gesellschaft in Wien 16, 173–184.

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.

Hartman, O. (1944). New England Annelida. Part 2. Including the unpublished plates by Verrill with reconstructed captions. Bulletin of the American Museum of Natural History 82, 331–343.

Hartman, O. (1948). The marine annelids errected by Kinberg with notes on some other types in the Swedish State Museum. Arkiv för Zoologi 42, 1–136.

Hartman, O. (1959). Catalogue of the Polychaetous Annelids of the World. Parts 1 and 2. Allan Hancock Foundation Occasional Papers 23, 1–628.

Haupt, T. M., Griffiths, C. L., and Robinson, T. B. (2012). Intra-regional translocations of epifaunal and infaunal species associated with cultured Pacific oysters Crassostrea gigas. African Journal of Marine Science 34, 187–194.
Intra-regional translocations of epifaunal and infaunal species associated with cultured Pacific oysters Crassostrea gigas.Crossref | GoogleScholarGoogle Scholar |

Hui, J. H. L., Kortchagina, N., Arendt, D., Balavoine, G., and Ferrier, D. E. K. (2007). Duplication of the ribosomal gene cluster in the marine polychaete Platynereis dumerilii correlates with ITS polymorphism. Journal of the Marine Biological Association of the United Kingdom 87, 443–449.
Duplication of the ribosomal gene cluster in the marine polychaete Platynereis dumerilii correlates with ITS polymorphism.Crossref | GoogleScholarGoogle Scholar |

Hutchings, P., and Kupriyanova, E. (2018). Cosmopolitan polychaetes – fact or fiction? Personal and historical perspectives. Invertebrate Systematics 32, 1–9.
Cosmopolitan polychaetes – fact or fiction? Personal and historical perspectives.Crossref | GoogleScholarGoogle Scholar |

Kara, J., MacDonald, A. H. H., and Simon, C. A. (2018). Integrative taxonomic methods reveal an incorrect synonymisation of the South African Pseudonereis podocirra (Schmarda) as the widespread Pseudonereis variegata (Grube) from Chile. Invertebrate Systematics 32, 1282–1297.
Integrative taxonomic methods reveal an incorrect synonymisation of the South African Pseudonereis podocirra (Schmarda) as the widespread Pseudonereis variegata (Grube) from Chile.Crossref | GoogleScholarGoogle Scholar |

Karl, S. A., Bowen, B. W., and Avise, J. C. (1992). Global population genetic structure and male-mediated gene flow in the green turtle (Chelonia mydas): RFLP analyses of anonymous nuclear loci. Genetics 131, 163–173.
Global population genetic structure and male-mediated gene flow in the green turtle (Chelonia mydas): RFLP analyses of anonymous nuclear loci.Crossref | GoogleScholarGoogle Scholar | 1350555PubMed |

Knowlton, N. (1993). Sibling species in the sea. Annual Review of Ecology and Systematics 24, 189–216.
Sibling species in the sea.Crossref | GoogleScholarGoogle Scholar |

Knowlton, N. (2000). Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420, 73–90.
Molecular genetic analyses of species boundaries in the sea.Crossref | GoogleScholarGoogle Scholar |

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.
MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.Crossref | GoogleScholarGoogle Scholar | 27004904PubMed |

Leigh, J. W., and Bryant, D. (2015). POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6, 1110–1116.
POPART: full-feature software for haplotype network construction.Crossref | GoogleScholarGoogle Scholar |

Lewis, C., and Karageorgopoulos, P. (2008). A new species of Marphysa (Eunicidae) from the western Cape of South Africa. Journal of the Marine Biological Association of the United Kingdom 88, 277–287.
A new species of Marphysa (Eunicidae) from the western Cape of South Africa.Crossref | GoogleScholarGoogle Scholar |

Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 19346325PubMed |

Lobo, J., Teixeira, M. A. L., Borges, M. S. L., Ferreira, M. S. G., Hollatz, C., Gomes, P. T., Sousa, R., Ravara, A., Costa, M. H., and Costa, F. O. (2016). Starting a DNA barcode reference library for shallow water polychaetes from the southern European Atlantic coast. Molecular Ecology Resources 16, 298–313.
Starting a DNA barcode reference library for shallow water polychaetes from the southern European Atlantic coast.Crossref | GoogleScholarGoogle Scholar | 26129849PubMed |

Lucey, N. M., Lombardi, C., Demarchi, L., Schulze, A., Gambi, M. C., and Calosi, P. (2015). To brood or not to brood: are marine invertebrates that protect their offspring more resilient to ocean acidification? Scientific Reports 5, 12009.
To brood or not to brood: are marine invertebrates that protect their offspring more resilient to ocean acidification?Crossref | GoogleScholarGoogle Scholar | 26156262PubMed |

Lutjeharms, J. R. E., and van Ballegooyen, R. C. (1988). Anomalous upstream retroflection in the Agulhas Current. Science 240, 1770.
Anomalous upstream retroflection in the Agulhas Current.Crossref | GoogleScholarGoogle Scholar |

Lutjeharms, J. R. E., Monteiro, P. M. S., Tyson, P. D., and Obura, D. (2001). The oceans around southern Africa and regional effects of global change. South African Journal of Science 97, 119–130.

McQuaid, C., and Branch, G. (1984). Influence of sea temperature, substratum and wave exposure on rocky intertidal communities: an analysis of faunal and floral biomass. Marine Ecology Progress Series 19, 145–151.
Influence of sea temperature, substratum and wave exposure on rocky intertidal communities: an analysis of faunal and floral biomass.Crossref | GoogleScholarGoogle Scholar |

Meyer, A. A., Lutjeharms, J. R. E., and De Villiers, S. (2002). The nutrient characteristics of the Natal Bight, South Africa. Journal of Marine Systems 35, 11–37.
The nutrient characteristics of the Natal Bight, South Africa.Crossref | GoogleScholarGoogle Scholar |

Miralles, L., Ardura, A., Arias, A., Borrell, Y. J., Clusa, L., Dopico, E., de Rojas, H. A., Lopez, B., Munoz-Colmenero, M., Roca, A., Valiente, A. G., Zaiko, A., and Garcia-Vazquez, E. (2016). Barcodes of marine invertebrates from north Iberian ports: Native diversity and resistance to biological invasions. Marine Pollution Bulletin 112, 183–188.
Barcodes of marine invertebrates from north Iberian ports: Native diversity and resistance to biological invasions.Crossref | GoogleScholarGoogle Scholar | 27527375PubMed |

Moquin-Tandon, G. (1869). Note sur une nouvelle annelide chetopode hermaphrodite (Nereis massiliensis). Annales des Sciences Naturelles 5, 1–134.

Mustaquim, J. (2000). Six new records of intertidal polychaetes from Pakistan. Pakistan Journal of Marine Sciences 9, 97–106.

Muteveri, T., Matthee, C. A., Bowie, R. C. K., and von der Heyden, S. (2015). High population connectivity and Pleistocene range expansion in the direct-developing plough shell Bullia rhodostoma along the South African coast. African Journal of Marine Science 37, 21–31.
High population connectivity and Pleistocene range expansion in the direct-developing plough shell Bullia rhodostoma along the South African coast.Crossref | GoogleScholarGoogle Scholar |

Nygren, A. (2014). Cryptic polychaete diversity: a review. Zoologica Scripta 43, 172–183.
Cryptic polychaete diversity: a review.Crossref | GoogleScholarGoogle Scholar |

Paiva, P. C., Mutaquilha, B. F., Coutinho, M. C. L., and Santos, C. S. G. (2019). Comparative phylogeography of two coastal species of Perinereis Kinberg, 1865 (Annelida, Polychaeta) in the South Atlantic. Marine Biodiversity 49, 1537–1551.
Comparative phylogeography of two coastal species of Perinereis Kinberg, 1865 (Annelida, Polychaeta) in the South Atlantic.Crossref | GoogleScholarGoogle Scholar |

Palumbi, S. R., and Baker, C. S. (1994). Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Molecular Biology and Evolution 11, 426–435.
Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales.Crossref | GoogleScholarGoogle Scholar | 7912407PubMed |

Penrith, M., and Kensley, B. (1970). The Constitution of the intertidal fauna of rocky shores of South West Africa. Part 1. Luderitzbucht. Cimbebasia A , 191–239.

Popa, L. O., Popa, O. P., Krapal, A. M., Iorgu, E. I., and Surugiu, V. (2014). Fine-scale population genetics analysis of Platynereis dumerilii (Polychaeta, Nereididae) in the Black Sea: how do local marine currents drive geographical differentiation? Journal of Experimental Zoology – A. Ecological Genetics and Physiology 321, 41–47.
Fine-scale population genetics analysis of Platynereis dumerilii (Polychaeta, Nereididae) in the Black Sea: how do local marine currents drive geographical differentiation?Crossref | GoogleScholarGoogle Scholar | 24123900PubMed |

Read, G. B. (2007). Taxonomy of sympatric New Zealand species of Platynereis, with description of three new species additional to P. australis (Schmarda) (Annelida: Polychaeta: Nereididae). Zootaxa 1558, 1–28.
Taxonomy of sympatric New Zealand species of Platynereis, with description of three new species additional to P. australis (Schmarda) (Annelida: Polychaeta: Nereididae).Crossref | GoogleScholarGoogle Scholar |

Read, G., and Fauchald, K. (2018a). Nereididae Blainville, 1818. In ‘World Polychaeta Database’. Available at http://www.marinespecies.org/polychaeta/aphia.php?p=taxdetails&id=22496 [Verified 15 February 2018].

Read, G., and Fauchald, K. (2018b). Platynereis australis (Schmarda, 1861). In ‘World Polychaeta Database’. Available at http://www.marinespecies.org/polychaeta/aphia.php?p=taxdetails&id=334555 [Verified 9 May 2020].

Read, G., and Fauchald, K. (2018c). Platynereis dumerilii (Audouin & Milne Edwards, 1833). In ‘World Polychaeta Database’. Available at http://www.marinespecies.org/polychaeta/aphia.php?p=taxdetails&id=130417 [Verified 20 April 2018].

Reynolds, T. V., Matthee, C. A., and Von Der Heyden, S. (2014). The influence of Pleistocene climatic changes and ocean currents on the phylogeography of the southern African barnacle, Tetraclita serrata (Thoracica; Cirripedia). PLoS One 9, e102115.
The influence of Pleistocene climatic changes and ocean currents on the phylogeography of the southern African barnacle, Tetraclita serrata (Thoracica; Cirripedia).Crossref | GoogleScholarGoogle Scholar | 25054971PubMed |

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Salazar-Vallejo, S. I., Gillet, P., and Surugiu, V. (2017). How false is Nereis falsa (Annelida, Phyllodocida, Nereididae)? Revista de Biología Tropical 65, 847–857.
How false is Nereis falsa (Annelida, Phyllodocida, Nereididae)?Crossref | GoogleScholarGoogle Scholar |

Satheeshkumar, P., and Jagadeesan, L. (2010). Phylogenetic position and genetic diversity of Neridae – polychaeta based on molecular data from 16S rRNA sequences. Middle East Journal of Scientific Research 6, 550–555.

Sauer, W. H., and Lipiński, M. R. (1991). Food of squid Loligo vulgaris reynaudii (Cephalopoda: Loliginidae) on their spawning grounds off the Eastern Cape, South Africa. South African Journal of Marine Science 10, 193–201.
Food of squid Loligo vulgaris reynaudii (Cephalopoda: Loliginidae) on their spawning grounds off the Eastern Cape, South Africa.Crossref | GoogleScholarGoogle Scholar |

Schaal, G., Riera, P., and Leroux, C. (2012). Food web structure within kelp holdfasts (Laminaria): a stable isotope study. Marine Ecology 33, 370–376.
Food web structure within kelp holdfasts (Laminaria): a stable isotope study.Crossref | GoogleScholarGoogle Scholar |

Schmarda, L. K. (1861). Neue wirbellose Thiere beobachtet und gesammelt auf einer Reise um die Erde 1853 bis 1857. In ‘Turbellarien, Rotatorien und Anneliden’. (W. Engelmann: Leipzig, Germany.) Available at https://www.biodiversitylibrary.org/item/50342 [Verified 22 January 2018].

Sedick, S., and Simon, C. (2019). Three new species of Syllis Savigny in Lamarck, 1818 (Annelida: Syllidae) from the south coast of South Africa. Zootaxa 4688, 585–598.
Three new species of Syllis Savigny in Lamarck, 1818 (Annelida: Syllidae) from the south coast of South Africa.Crossref | GoogleScholarGoogle Scholar |

Sigamani, S., Perumal, M., Thivakaran, G. A., Thangavel, B., Kandasamy, K., and Borja, A. (2020). DNA barcoding of macrofauna act as a tool for assessing marine ecosystem. Marine Pollution Bulletin 152, 107891.
DNA barcoding of macrofauna act as a tool for assessing marine ecosystem.Crossref | GoogleScholarGoogle Scholar | 27423443PubMed |

Sikorski, A., and Pavlova, L. (2016). Three new species of Laonice (Polychaete: Spionidae) from West and Southwest Africa. Zootaxa 4097, 353–368.
Three new species of Laonice (Polychaete: Spionidae) from West and Southwest Africa.Crossref | GoogleScholarGoogle Scholar | 27394551PubMed |

Simon, C. A., Sato-Okoshi, W., and Abe, H. (2019a). Hidden diversity within the cosmopolitan species Pseudopolydora antennata (Claparède, 1869) (Spionidae: Annelida). Marine Biodiversity 49, 25–42.
Hidden diversity within the cosmopolitan species Pseudopolydora antennata (Claparède, 1869) (Spionidae: Annelida).Crossref | GoogleScholarGoogle Scholar |

Simon, C. A., Williams, L.-G., and Henninger, T. (2019b). A new species of Rhynchospio (Annelida: Spionidae) in South Africa. Marine Biodiversity 49, 663–672.
A new species of Rhynchospio (Annelida: Spionidae) in South Africa.Crossref | GoogleScholarGoogle Scholar |

Sink, K. J., Holness, S., Harris, L., Majiedt, P., Atkinson, L., Robinson, T., Kirkman, S., Hutchings, L., Leslie, R., Lamberth, S., Kerwath, S., von der Heyden, S., Lombard, A., Attwood, C., Branch, G., Fairweather, T., Taljaard, S., Weerts, S., Cowley, P., Awad, A., Halpern, B., Grantham, H., and Wolf, T. (2012). National Biodiversity Assessment 2011: Technical Report. Volume 4: Marine and Coastal Component. South African National Biodiversity Institute, Pretoria, South Africa.

Smit, A. J., Roberts, M., Anderson, R. J., Dufois, F., Dudley, S. F. J., Bornman, T. G., Olbers, J., and Bolton, J. J. (2013). A coastal seawater temperature dataset for biogeographical studies: large biases between in situ and remotely sensed data sets around the coast of South Africa. PLoS One 8, e81944.
A coastal seawater temperature dataset for biogeographical studies: large biases between in situ and remotely sensed data sets around the coast of South Africa.Crossref | GoogleScholarGoogle Scholar | 24376641PubMed |

Styan, C. A., McCluskey, C. F., Sun, Y., and Kupriyanova, E. K. (2017). Cryptic sympatric species across the Australian range of the global estuarine invader Ficopomatus enigmaticus (Fauvel, 1923) (Serpulidae, Annelida). Aquatic Invasions 12, 53–65.
Cryptic sympatric species across the Australian range of the global estuarine invader Ficopomatus enigmaticus (Fauvel, 1923) (Serpulidae, Annelida).Crossref | GoogleScholarGoogle Scholar |

Teske, P. R., Papadopoulos, I., Zardi, G. I., McQuaid, C. D., Edkins, M. T., Griffiths, C. L., and Barker, N. P. (2007). Implications of life history for genetic structure and migration rates of southern African coastal invertebrates: planktonic, abbreviated and direct development. Marine Biology 152, 697–711.
Implications of life history for genetic structure and migration rates of southern African coastal invertebrates: planktonic, abbreviated and direct development.Crossref | GoogleScholarGoogle Scholar |

Teske, P. R., Von der Heyden, S., McQuaid, C. D., and Barker, N. P. (2011). A review of marine phylogeography in southern Africa. South African Journal of Science 107, 514.
A review of marine phylogeography in southern Africa.Crossref | GoogleScholarGoogle Scholar |

Toms, J. A., Compton, J. S., Smale, M., and von der Heyden, S. (2014). Variation in palaeo-shorelines explains contemporary population genetic patterns of rocky shore species. Biology Letters 10, 20140330.
Variation in palaeo-shorelines explains contemporary population genetic patterns of rocky shore species.Crossref | GoogleScholarGoogle Scholar | 24966206PubMed |

Valvassori, G., Massa-Gallucci, A., and Gambi, M. (2015). Reappraisal of Platynereis massiliensis (Moquin-Tandon) (Annelida, Nereididae), a neglected sibling species of Platynereis dumerilii (Audouin & Milne Edwards). Biologia Marina Mediterranea 22, 113–116.

Villalobos-Guerrero, T. F. (2019). Redescription of two overlooked species of the Perinereis nuntia complex and morphological delimitation of P. nuntia (Savigny in Lamarck, 1818) from the Red Sea (Annelida, Nereididae). Zoosystema 41, 465–497.
Redescription of two overlooked species of the Perinereis nuntia complex and morphological delimitation of P. nuntia (Savigny in Lamarck, 1818) from the Red Sea (Annelida, Nereididae).Crossref | GoogleScholarGoogle Scholar |

Vogel Ely, C., Bordignon, S. A. L., Trevisan, R., and Boldrini, I. I. (2017). Implications of poor taxonomy in conservation. Journal for Nature Conservation 36, 10–13.
Implications of poor taxonomy in conservation.Crossref | GoogleScholarGoogle Scholar |

Wäge, J., Valvassori, G., Hardege, J. D., Schulze, A., and Gambi, M. C. (2017). The sibling polychaetes Platynereis dumerilii and Platynereis massiliensis in the Mediterranean Sea: are phylogeographic patterns related to exposure to ocean acidification? Marine Biology 164, 199.
The sibling polychaetes Platynereis dumerilii and Platynereis massiliensis in the Mediterranean Sea: are phylogeographic patterns related to exposure to ocean acidification?Crossref | GoogleScholarGoogle Scholar |

Williams, L., Matthee, C. A., and Simon, C. A. (2016). Dispersal and genetic structure of Boccardia polybranchia and Polydora hoplura (Annelida: Spionidae) in South Africa and their implications for aquaculture. Aquaculture 465, 235–244.
Dispersal and genetic structure of Boccardia polybranchia and Polydora hoplura (Annelida: Spionidae) in South Africa and their implications for aquaculture.Crossref | GoogleScholarGoogle Scholar |

Yee, A., Mackie, J., and Pernet, B. (2019). The distribution and unexpected genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in California. Aquatic Invasions 14, 250–266.
The distribution and unexpected genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in California.Crossref | GoogleScholarGoogle Scholar |