Phylogenetic status of four new species of Acanthobothrium (Cestoda : Tetraphyllidea) parasitic on the wedgefish Rhynchobatus laevis (Elasmobranchii : Rhynchobatidae): implications for interpreting host associations
C. A. Fyler A and J. N. Caira A BA Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd, Storrs, CT 06269-3043, USA.
B Corresponding author. Email: janine.caira@uconn.edu
Invertebrate Systematics 24(5) 419-433 https://doi.org/10.1071/IS10034
Submitted: 6 November 2010 Accepted: 24 December 2010 Published: 4 March 2011
Abstract
A recent major revision of the elasmobranchs of Australia, which expanded the described fauna from 190 to 307 species, has serious implications for our understanding of the host associations of parasites of Australian elasmobranchs. Most importantly, it questions the identities of the host records for many parasite species. This study focuses on cestodes of the tetraphyllidean genus Acanthobothrium parasitising Rhynchobatus, a batoid genus, the Australian elements of which have recently been revised. Four new cestode species are described from Rhynchobatus laevis (Bloch & Schneider, 1801) from the Northern Territory, Australia. These species differ from their ~160 congeners in several morphological respects. They differ conspicuously from their four Australian congeners also hosted by a Rhynchobatus species, all four of which (i.e. Acanthobothrium bartonae Campbell & Beveridge, 2002, Acanthobothrium gibsoni Campbell & Beveridge, 2002, Acanthobothrium lasti Campbell & Beveridge, 2002 and Acanthobothrium rhynchobatidis Subhapradha, 1955) were reported from Rhynchobatus djiddensis (Forsskål, 1775), a batoid species no longer considered to occur in Australian waters. This suggests that one or both of the other Australian members of Rhynchobatus (i.e. R. australiae Whitley, 1939 and R. palpebratus Compagno & Last, 2008) are likely candidates as hosts for one or more of the latter four species. With respect to the relationships among congeners parasitising the same host species, phylogenetic analyses of sequence data of the D1–D3 region of 28S rDNA for three of the four new cestode species support previous work suggesting that congeners parasitising the same host species are not each other’s closest relatives. This study also serves to emphasise the importance of careful scrutiny of host identities, particularly in systems such as this, in which host taxonomy is under active revision.
References
Caira, J. N., Mega, J., and Ruhnke, T. R. (2005). An unusual blood sequestering tapeworm (Sanguilevator yearsleyi n. gen., sp. nov.) from Borneo with description of Cathetocephalus resendezi sp. nov. from Mexico and molecular support for the recognition of the order Cathetocephalidea (Platyhelminthes: Eucestoda). International Journal for Parasitology 35, 1135–1152.| An unusual blood sequestering tapeworm (Sanguilevator yearsleyi n. gen., sp. nov.) from Borneo with description of Cathetocephalus resendezi sp. nov. from Mexico and molecular support for the recognition of the order Cathetocephalidea (Platyhelminthes: Eucestoda).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mvnt1eksg%3D%3D&md5=cc7a6e483e5685f9d6c46bb213791acaCAS | 16019004PubMed |
Campbell, R. A., and Beveridge, I. (2002). The genus Acanthobothrium (Cestoda: Tetraphyllidea: Onchobothriidae) parasitic in Australian elasmobranch fishes. Invertebrate Systematics 16, 237–344.
| The genus Acanthobothrium (Cestoda: Tetraphyllidea: Onchobothriidae) parasitic in Australian elasmobranch fishes.Crossref | GoogleScholarGoogle Scholar |
Chervy, L. (2009). Unified terminology for cestode microtriches: a proposal from the International Workshops on Cestode Systematics in 2002–2008. Folia Parasitologica 56, 199–230.
| 19827364PubMed |
de Chambrier, A., Zehnder, M., Vaucher, C., and Mariaux, J. (2004). The evolution of the Proteocephalidea (Platyhelminthes, Eucestoda) based on an enlarged molecular phylogeny, with comments on their uterine development. Systematic Parasitology 57, 159–171.
| The evolution of the Proteocephalidea (Platyhelminthes, Eucestoda) based on an enlarged molecular phylogeny, with comments on their uterine development.Crossref | GoogleScholarGoogle Scholar | 15010590PubMed |
Euzet, L. (1959). Recherches sur les cestodes tétraphyllides des sélaciens de côte de France. Ph.D. Thesis, University of Montpellier, France.
Froese, R., and Pauly, D. (2010). ‘FishBase.’ Available at www.fishbase.org [accessed 1 September 2010].
Fyler, C. A. (2011). An extremely hyperapolytic Acanthobothrium species (Tetraphyllidea: Cestoda) from the Japanese Wobbegong, Orectolobus japonicus (Elasmobranchii: Orectolobiformes). Comparative Parasitology 78, 4–14.
Fyler, C. A., Caira, J. N., and Jensen, K. (2009). Five new species of Acanthobothrium (Cestoda: Tetraphyllidea) from an unusual species of Himantura (Rajiformes: Dasyatidae) from northern Australia. Folia Parasitologica 56, 107–128.
| 19606787PubMed |
Ghoshroy, S., and Caira, J. N. (2001). Four new species of Acanthobothrium (Cestoda: Tetraphyllidea) from the whiptail stingray Dasyatis brevis in the Gulf of California. The Journal of Parasitology 87, 354–372.
| 1:STN:280:DC%2BD3M3mtF2ktw%3D%3D&md5=6074143a7a41d7087aca54ead17a96acCAS | 11318566PubMed |
Hillis, D. M., and Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42, 182–192.
Holland, N. D., and Wilson, N. G. (2009). Molecular identification of larvae of tetraphyllidean tapeworm (Platyhelminthes: Eucestoda) in a razor clam as an alternative intermediate host in the life cycle of Acanthobothrium brevissime. The Journal of Parasitology 95, 1215–1217.
| Molecular identification of larvae of tetraphyllidean tapeworm (Platyhelminthes: Eucestoda) in a razor clam as an alternative intermediate host in the life cycle of Acanthobothrium brevissime.Crossref | GoogleScholarGoogle Scholar | 19366282PubMed |
Holland, N. D., Campbell, T. G., Garey, J. R., Holland, L. Z., and Wilson, N. G. (2009). The Florida amphioxus (Cephalochordata) hosts larvae of the tapeworm Acanthobothrium brevissime: natural history, anatomy and taxonomic identification of the parasite. Acta Zoologica 90, 75–86.
| The Florida amphioxus (Cephalochordata) hosts larvae of the tapeworm Acanthobothrium brevissime: natural history, anatomy and taxonomic identification of the parasite.Crossref | GoogleScholarGoogle Scholar |
Last, P. R., and Stevens, J. D. (1994). ‘Sharks and Rays of Australia.’ 1st edn. (CSIRO Publications: Tasmania, Australia.)
Last, P. R., and Stevens, J. D. (2009). ‘Sharks and Rays of Australia.’ 2nd edn. (CSIRO Publications: Tasmania, Australia.)
Nylander, J. A. A. (2004). ‘MrModelTest.’ Version 2. (Evolutionary Biology: Uppsala University, Sweden.)
Olson, P. D., Littlewood, D. T. J., Bray, R. A., and Mariaux, J. (2001). Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Molecular Phylogenetics and Evolution 19, 443–467.
| Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1Sgt70%3D&md5=1b8527d30938302a53ebc50424458cfcCAS | 11399152PubMed |
Pleijel, R., Jondelius, U., Norlinder, E., Nygeren, A., Oxelman, B., Schander, C., Sundberg, P., and Thollesson, M. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution 48, 369–371.
| Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlCku74%3D&md5=cc79762722b9badaa3910f63127482e3CAS | 18424089PubMed |
Posada, D., and Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817–818.
| MODELTEST: testing the model of DNA substitution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlCltw%3D%3D&md5=d2bcfda7a0dd43b2a56458d7a5084483CAS | 9918953PubMed |
Ronquist, F., and Huelsenbeck, J. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 1572–1574.
| MRBAYES 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=2e3026ffe4fe8a7047647a21d09682feCAS | 12912839PubMed |
Subhapradha, C. K. (1955). Cestode parasites of fishes of Madras Coast. Indian Journal of Helminthology 7, 41–132.
Swofford, D. L. (2002). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods).’ Version 4.0b10. (Sinauer Associates: Sunderland, MA.)
Waeschenbach, A., Webster, B. L., Bray, R. A., and Littlewood, D. T. J. (2007). Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. Molecular Phylogenetics and Evolution 45, 311–325.
| Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmt7zL&md5=b3c82aa65bab657b1b286991f9c5b172CAS | 17485227PubMed |
Wilcox, T. P., Zwickl, D. J., Heath, T. A., and Hillis, D. M. (2002). Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution 25, 361–371.
| Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Knur0%3D&md5=55bbc79b4e7ab2c05a90b1887341f621CAS | 12414316PubMed |
Yang, W., and Lin, Y. (1994). Two new species of Acanthobothrium cestodes (Tetraphyllidea: Onchobothriidae) from saltwater fishes in Xiamen, South Fujian, China. Journal of Xiamen University 33, 532–536.
Zehnder, M. P., and Mariaux, J. (1999). Molecular systematic analysis of the order Proteocephalidea (Eucestoda) based on mitochondrial and nuclear rDNA sequences. International Journal for Parasitology 29, 1841–1852.
| Molecular systematic analysis of the order Proteocephalidea (Eucestoda) based on mitochondrial and nuclear rDNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotV2mt7Y%3D&md5=310f9071e74adb581d044dc2b8aaab7bCAS | 10616930PubMed |
Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. Dissertation, University of Texas, Austin.