Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Deconstructing the crustacean squat lobster genus Munida to reconstruct the evolutionary history and systematics of the family Munididae (Decapoda, Anomura, Galatheoidea)

Annie Machordom https://orcid.org/0000-0003-0341-0809 A * , Shane T. Ahyong B C , Nikos Andreakis D , Keiji Baba E , David Buckley F H , Ricardo García-Jiménez A , Anna W. McCallum H , Paula C. Rodríguez-Flores https://orcid.org/0000-0003-1555-9598 I and Enrique Macpherson J
+ Author Affiliations
- Author Affiliations

A Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, E-28006 Madrid, Spain.

B Australian Museum, 1 William Street, Sydney, NSW 2010, Australia.

C School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW 2052, Australia.

D College of Science and Engineering, James Cook University, Townsville, Qld 4814, Australia.

E Kumamoto University, Faculty of Education, 2-40-1 Kurokami, Kumamoto 860-8555, Japan.

F Department of Biology (Genetics), Universidad Autónoma de Madrid (UAM), Darwin, 2, E-28049 Madrid, Spain.

G Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid (UAM), Darwin, 2, E-28049 Madrid, Spain.

H Museums Victoria, GPO Box 666, Melbourne, Vic. 3001, Australia.

I Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

J Centre d’Estudis Avançats de Blanes (CEAB-CSIC), C. acc. Cala Sant Françesc 14 E-17300 Blanes, Girona, Spain.

* Correspondence to: annie@mncn.csic.es

Handling Editor: Jo Wolfe

Invertebrate Systematics 36(10) 926-970 https://doi.org/10.1071/IS22013
Submitted: 20 February 2022  Accepted: 27 July 2022   Published: 6 October 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

Unravelling the evolutionary history of taxa requires solid delimitation of the traits characterising these. This can be challenging especially in groups with a highly complex taxonomy. The squat lobster family Munididae contains more than 450 species distributed among 21 genera, Munida being the most speciose (~300 species). Previous phylogenetic studies, based on a small part of the diversity of the group, have suggested polyphyletic origins for Munida and the paraphyly of Munididae. Here, we use an integrative approach based on multi-locus phylogenies (two mitochondrial and three nuclear markers) paired with 120 morphological characters, to resolve taxonomic and evolutionary relationships within Munididae. Our study covers ~60% of the family’s known diversity (over 800 specimens of 291 species belonging to 19 of the 21 genera collected from the Atlantic, Indian and Pacific oceans). Using this information, we confirm the validity of most genera, proposing new ones in cases where the genetic analyses are compatible with morphological characters. Four well-defined munidid clades were recovered, suggesting that new genera should be erected in the currently recognised Munididae (three for the genus Agononida and eleven in Munida), and the genus Grimothea is resurrected. A key to all genera of the family is presented. Molecular clock estimates and ancestral biogeographic area reconstructions complement the taxonomic profiles and suggest some explosive diversification within Munididae during the Cretaceous and the Palaeogene. Further anagenetic events and narrow sympatry accounting for changes in distribution indicate a more limited dispersal capacity than previously considered. Our study unravels how diversification may occur in deep waters and further highlights the importance of the integrative approach in accurately delineating species in understanding the history of a family and the factors driving the evolution.

ZooBank LSID: urn:lsid:zoobank.org:pub:16A61C4A-8D96-4372-820F-8EBDF179B43C

Keywords: biogeography, Decapoda, ESUs, fossil calibrated tree, integrative taxonomy, morphology, multilocus new genera, phylogeny, supraspecific lineage delimitation.


References

Ahyong, ST (2007). Decapod Crustacea collected by the NORFANZ Expedition: Galatheidae and Polychelidae. Zootaxa 1593, 1–54.

Ahyong, ST, Baba, K, Macpherson, E, and Poore, GCB (2010). A new classification of the Galatheoidea (Crustacea: Decapoda: Anomura). Zootaxa 2676, 57–68.
A new classification of the Galatheoidea (Crustacea: Decapoda: Anomura).Crossref | GoogleScholarGoogle Scholar |

Ahyong ST, Schnabel K, Macpherson E (2011) Phylogeny and fossil record of the marine squat lobsters. In ‘The biology of squat lobsters’. (Eds GCB Poore, ST Ahyong, J Taylor) pp. 73–104. (CSIRO Publishing: Melbourne, Vic., Australia)

Alcock A (1901) ‘A descriptive catalogue of the Indian deep-sea Crustacea Decapoda Macrura and Anomala, in the Indian Museum. Being a revised account of the deep-sea species collected by the Royal Indian Marine Survey Ship Investigator.’ (Trustees of the Indian Museum: Calcutta, India)

Álvarez, A, Arévalo, RLM, and Verzi, DH (2017). Diversification patterns and size evolution in caviomorph rodents. Biological Journal of the Linnean Society 121, 907–922.
Diversification patterns and size evolution in caviomorph rodents.Crossref | GoogleScholarGoogle Scholar |

Avise, JC, and Liu, JX (2011). On the temporal inconsistencies of Linnean taxonomic ranks. Biological Journal of the Linnean Society 102, 707–714.
On the temporal inconsistencies of Linnean taxonomic ranks.Crossref | GoogleScholarGoogle Scholar |

Baba, K (1969). Four new genera with their representatives and six new species of the Galatheidae in the collection of the Zoological Laboratory, Kyushu University, with redefinition of the genus Galathea. Ohmu 2, 1–32.

Baba, K (1988). Chirostylid and galatheid crustacean (Decapoda: Anomura) of the “Albatross” Philippine expedition, 1907–1910. Researches on Crustacea, Special Number 2, 1–186.
Chirostylid and galatheid crustacean (Decapoda: Anomura) of the “Albatross” Philippine expedition, 1907–1910.Crossref | GoogleScholarGoogle Scholar |

Baba, K (1991). Crustacea Decapoda: Alainius gen. nov., Leiogalathea Baba, 1969, and Phylladiorhynchus Baba, 1969 (Galatheidae) from New Caledonia. In ‘Résultats des Campagnes MUSORSTOM, volume 9’. (Ed. A Crosnier). Mémoires du Muséum National d’Histoire Naturelle, Paris (A) 152, 479–491.

Baba, K (1993). Anomoeomunida, a new genus proposed for Phylladiorhynchus caribensis Mayo, 1972 (Crustacea: Decapoda: Galatheidae). Proceedings of the Biological Society of Washington 106, 102–105.

Baba, K (2005). Deep-sea Chirostylid and Galatheid crustaceans (Decapoda: Anomura) from the Indo-Pacific, with a list of species. Galathea Report 20, 5–317.

Baba, K (2008). Torbenella, a replacement name for Torbenia Baba, 2005 (Decapoda, Galatheidae) preoccupied by Torbenia Libert, 2000 (Insecta, Lepidoptera, Lycaenidae). Crustaceana 81, 1021–1022.
Torbenella, a replacement name for Torbenia Baba, 2005 (Decapoda, Galatheidae) preoccupied by Torbenia Libert, 2000 (Insecta, Lepidoptera, Lycaenidae).Crossref | GoogleScholarGoogle Scholar |

Baba, K, and de Saint Laurent, M (1996). Crustacea Decapoda: Revision of the genus Bathymunida Balss, 1914, and description of six new related genera (Galatheidae). In: Crosnier, A. (Ed.), Résultats des Campagnes MUSORSTOM, volume 15. Mémoires du Muséum National d’Histoire Naturelle, Paris 168, 433–502.

Baba, K, Macpherson, E, Poore, GCB, Ahyong, ST, Bermudez, A, Cabezas, P, Lin, C-W, Nizinski, M, Rodrigues, C, and Schnabel, KE (2008). Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura—families Chirostylidae, Galatheidae and Kiwaidae). Zootaxa 1905, 1–220.
Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura—families Chirostylidae, Galatheidae and Kiwaidae).Crossref | GoogleScholarGoogle Scholar |

Baba K, Macpherson E, Lin CW, Chan TY (2009) ‘Crustacean Fauna of Taiwan. Squat lobsters (Chirostylidae and Galatheidae).’ (National Taiwan Ocean University: Keelung, Taiwan)

Baba K, Ahyong ST, Macpherson E (2011) Morphology of the marine squat lobsters. In ‘The biology of squat lobsters’. (Eds GCB Poore, ST Ahyong, J Taylor) pp. 1–37. (CSIRO Publishing: Melbourne, Vic., Australia)

Balss, H (1914). Ueber einige interessante Decapoden der “Pola’-Expeditionen in das Rote Meer. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften in Wein 1914, 133–139.

Barnard, KH (1950). Descriptive catalogue of South African decapod Crustacea (crabs and shrimps). Annals of the South African Museum 38, 1–837.

Benedict, JE (1902). Description of a new genus and forty six new species of crustaceans of the family Galatheidae with a list of the known marine species. Proceedings of the Biological Society of Washington 26, 243–334.

Bouckaert, RR, and Drummond, AJ (2017). bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology 17, 42.
bModelTest: Bayesian phylogenetic site model averaging and model comparison.Crossref | GoogleScholarGoogle Scholar |

Bouckaert, R, Vaughan, TG, Barido-Sottani, J, Duchêne, S, Fourment, M, Gavryushkina, A, Heled, J, Jones, G, Kühnert, D, De Maio, N, Matschiner, M, Mendes, FK, Müller, NF, Ogilvie, HA, du Plessis, L, Popinga, A, Rambaut, A, Rasmussen, D, Siveroni, I, Suchard, MA, Wu, C-H, Xie, D, Zhang, C, Stadler, T, and Drummond, AJ (2019). BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15, e1006650.
BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar |

Bracken-Grissom, HD, Cannon, ME, Cabezas, P, Feldmann, RM, Schweitzer, CE, Ahyong, ST, Felder, DL, Lemaitre, R, and Crandall, KA (2013). A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda). BMC Evolutionary Biology 13, 128.
A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda).Crossref | GoogleScholarGoogle Scholar |

Bracken-Grissom, HD, Ahyong, ST, Wilkinson, RD, Feldmann, RM, Schweitzer, CE, Breinholt, JW, Bendall, M, Palero, F, Chan, TY, Felder, DL, Robles, R, Chu, KH, Tsang, LM, Kim, D, Martin, JW, and Crandall, KA (2014). The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, Astacidea, Glypheidea, Polychelida). Systematic Biology 63, 457–479.
The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, Astacidea, Glypheidea, Polychelida).Crossref | GoogleScholarGoogle Scholar |

Cabezas, P, and Chan, T-Y (2014). Deep-sea squat lobsters of the genus Paramunida Baba, 1988 (Crustacea: Decapoda: Munididae) from the Philippines Panglao 2004, Panglao 2005 and Aurora 2007 expeditions, with the description of three new species. Raffles Bulletin of Zoology 62, 302–316.

Cabezas, P, and Macpherson, E (2014). A new species of Paramunida Baba, 1988 from the Central Pacific Ocean and a new genus to accommodate P. granulata (Henderson, 1885). ZooKeys 425, 15–32.
A new species of Paramunida Baba, 1988 from the Central Pacific Ocean and a new genus to accommodate P. granulata (Henderson, 1885).Crossref | GoogleScholarGoogle Scholar |

Cabezas, P, Macpherson, E, and Machordom, A (2008). A new genus of squat lobster (Decapoda: Anomura: Galatheidae) from the South West Pacific and Indian Ocean inferred from morphological and molecular evidence. Journal of Crustacean Biology 28, 68–75.
A new genus of squat lobster (Decapoda: Anomura: Galatheidae) from the South West Pacific and Indian Ocean inferred from morphological and molecular evidence.Crossref | GoogleScholarGoogle Scholar |

Cabezas, P, Macpherson, E, and Machordom, A (2011). Allogalathea (Decapoda: Galatheidae): a monospecific genus of squat lobster? Zoological Journal of the Linnean Society 162, 245–270.
Allogalathea (Decapoda: Galatheidae): a monospecific genus of squat lobster?Crossref | GoogleScholarGoogle Scholar |

Cabezas, P, Sanmartín, I, Paulay, G, Macpherson, E, and Machordom, A (2012). Deep under the sea: unraveling the evolutionary history of the deep-sea squat lobster Paramunida (Decapoda, Munididae). Evolution 66, 1878–1896.
Deep under the sea: unraveling the evolutionary history of the deep-sea squat lobster Paramunida (Decapoda, Munididae).Crossref | GoogleScholarGoogle Scholar |

Casadío, S, De Angeli, A, Feldmann, RM, Garassino, A, Hetler, JL, Parras, A, and Schweitzer, CE (2004). New decapod crustaceans (Thalassinidea, Galatheoidea, Brachyura) from the middle Oligocene of Patagonia, Argentina. Annals of Carnegie Museum 73, 85–107.

Cavieres, J, and Nicolis, O (2018). Using a spatio-temporal Bayesian approach to estimate the relative abundance index of yellow squat lobster (Cervimunida johni) off Chile. Fisheries Research 208, 97–104.
Using a spatio-temporal Bayesian approach to estimate the relative abundance index of yellow squat lobster (Cervimunida johni) off Chile.Crossref | GoogleScholarGoogle Scholar |

Chace, FA (1939). Reports on the scientific results of the first Atlantis Expedition to the West Indies, etc. Preliminary descriptions of one new genus and seventeen new species of decapod and stomatopod Crustacea. Memorias de la Sociedad Cubana de Historia Natural 13, 31–54.

Chace, FA (1942). The Anomura Crustacea. I. Galatheidea. Reports of the scientific results of the Atlantis Expeditions to the West Indies, under the joint auspices of the University of Havana and Harvard University. Torreia 11, 1–106.

Costello, MJ, and Chaudhary, C (2017). Marine biodiversity, biogeography, deep-sea gradients, and conservation. Current Biology 27, R511–R527.
Marine biodiversity, biogeography, deep-sea gradients, and conservation.Crossref | GoogleScholarGoogle Scholar |

Coykendall, DK, Nizinski, MS, and Morrison, CL (2017). A phylogenetic perspective on diversity of Galatheoidea (Munida, Munidopsis) from cold-water coral and cold seep communities in the western North Atlantic Ocean. Deep-Sea Research – Part II: Topical Studies in Oceanography 137, 258–272.
A phylogenetic perspective on diversity of Galatheoidea (Munida, Munidopsis) from cold-water coral and cold seep communities in the western North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Cunha, TJ, Lemer, S, Bouchet, P, Kano, Y, and Giribet, G (2019). Putting keyhole limpets on the map: phylogeny and biogeography of the globally distributed marine family Fissurellidae (Vetigastropoda, Mollusca. Molecular Phylogenetics and Evolution 135, 249–269.
Putting keyhole limpets on the map: phylogeny and biogeography of the globally distributed marine family Fissurellidae (Vetigastropoda, Mollusca.Crossref | GoogleScholarGoogle Scholar |

Dana, JD (1852). Crustacea. Part I. United States Exploring Expedition, during the years 1838, 1839, 1840, 1841, 1842, under the command of Charles Wilkes, U.S.N. 13, 1–685.

de Carvalho, MR, Ebach, MC, Williams, DM, Nihei, SS, Trefaut Rodrigues, M, Grant, T, Silveira, LF, Zaher, H, Gill, AC, Schelly, RC, Sparks, JS, Bockmann, FA, Séret, B, Ho, H-C, Grande, L, Rieppel, O, Dubois, A, Ohler, A, Faivovich, J, Assis, LCS, Wheeler, QD, Goldstein, PZ, de Almeida, EAB, Valdecasas, AG, and Nelson, G (2014). Does counting species count as taxonomy? On misrepresenting systematics, yet again. Cladistics 30, 322–329.
Does counting species count as taxonomy? On misrepresenting systematics, yet again.Crossref | GoogleScholarGoogle Scholar |

de Queiroz, K (2007). Towards an integrated system of clade names. Systematics Biology 56, 956–974.
Towards an integrated system of clade names.Crossref | GoogleScholarGoogle Scholar |

Desmarest AG (1825) ‘Considérations générales sur la classe des Crustacés et descriptions des espèces de ces animaux, qui vivent dans la mer, sur les côtes, ou dans les eaux douces de la France.’ (Levrault: Paris, France)

Doflein, F, and Balss, H (1913). Die Galatheiden der Deutschen Tiefsee-Expedition. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer “Valdivia” 1898–1899 20, 125–184.

Dupin, J, Matzke, NJ, Särkinen, T, Knapp, S, Olmstead, RG, Bohs, L, and Smith, SD (2016). Bayesian estimation of the global biogeographical history of the Solanaceae. Journal of Biogeography 44, 887–899.
Bayesian estimation of the global biogeographical history of the Solanaceae.Crossref | GoogleScholarGoogle Scholar |

Feldmann, RM, and Schweitzer, CE (2006). Paleobiogeography of southern hemisphere Decapod Crustacea. Journal of Paleontology 80, 83–103.
Paleobiogeography of southern hemisphere Decapod Crustacea.Crossref | GoogleScholarGoogle Scholar |

Feldmann, RM, Tshudy, DM, and Thomson, MRA (1993). Late Cretaceous and Paleocene decapod crustaceans from James Ross Basin, Antarctic Peninsula. Journal of Paleontology 67, 1–41.
Late Cretaceous and Paleocene decapod crustaceans from James Ross Basin, Antarctic Peninsula.Crossref | GoogleScholarGoogle Scholar |

Feldmann, RM, Schweitzer, CE, and Boessenecker, RW (2015). A new squat lobster (Decapoda: Anomura: Galatheoidea) from the Pliocene Purisima Formation, California. Annals of Carnegie Museum 83, 85–93.
A new squat lobster (Decapoda: Anomura: Galatheoidea) from the Pliocene Purisima Formation, California.Crossref | GoogleScholarGoogle Scholar |

Filhol H (1885) ‘La vie au fond des mers. Les explorations sous-marines et les voyages du Travailleur et du Talisman.’ (Masson: Paris, France)

Gavryushkina, A, Welch, D, Stadler, T, and Drummond, AJ (2014). Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Computational Biology 10, e1003919.
Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration.Crossref | GoogleScholarGoogle Scholar |

Giribet, G, Hormiga, G, and Edgecombe, GD (2016). The meaning of categorical ranks in evolutionary biology. Organisms Diversity & Evolution 16, 427–430.
The meaning of categorical ranks in evolutionary biology.Crossref | GoogleScholarGoogle Scholar |

Guindon, S, Dufayard, JF, Lefort, V, Anisimova, M, Hordijk, W, and Gascuel, O (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar |

Henderson, JR (1888). Report on the Anomura collected by H.M.S. Challenger during the years 1873–76. Report on the Scientific Results of the Voyage of H.M.S. Challenger during the years 1873–76. Zoology 27, 1–221.

Hou, Z, and Li, S (2018). Tethyan changes shaped aquatic diversification. Biological Reviews 93, 874–896.
Tethyan changes shaped aquatic diversification.Crossref | GoogleScholarGoogle Scholar |

Hyžný, M, and Schlögl, J (2011). An early Miocene deep-water decapod crustacean faunule from the Vienna Basin (Western Carpathians, Slovakia). Palaeontology 54, 323–349.
An early Miocene deep-water decapod crustacean faunule from the Vienna Basin (Western Carpathians, Slovakia).Crossref | GoogleScholarGoogle Scholar |

Jenkyns, HC (2010). Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems 11, 1–30.
Geochemistry of oceanic anoxic events.Crossref | GoogleScholarGoogle Scholar |

Jones RW (1999) Marine invertebrate (chiefly foraminiferal) evidence for the palaeogeography of the Oligocene–Miocene of western Eurasia, and consequences for terrestrial vertebrate migration. In ‘The Evolution of Neogene Terrestrial Ecosystems in Europe’. (Eds J Agustí, L Rook, P Andrews) pp. 274–309. (Cambridge University Press: Cambridge, UK)
| Crossref |

Katoh, K, Misawa, K, Kuma, K-i, and Miyata, T (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar |

Kiko, R, Hauss, H, Dengler, M, Sommer, S, and Melzner, F (2015). The squat lobster Pleuroncodes monodon tolerates anoxic “dead zone” conditions off Peru. Marine Biology 162, 1913–1921.
The squat lobster Pleuroncodes monodon tolerates anoxic “dead zone” conditions off Peru.Crossref | GoogleScholarGoogle Scholar |

Klaus, KV, and Matzke, NJ (2020). Statistical comparison of trait-dependent biogeographical models indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Systematic Biology 69, 61–75.
Statistical comparison of trait-dependent biogeographical models indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance.Crossref | GoogleScholarGoogle Scholar |

Klompmaker, AA, Robins, CM, Jakobsen, SL, and Sheldon, E (2022). Systematics of 12 Jurassic, Cretaceous, and Paleogene squat lobster taxa (Galatheoidea). Journal of Paleontology 96, 1087–1110.
Systematics of 12 Jurassic, Cretaceous, and Paleogene squat lobster taxa (Galatheoidea).Crossref | GoogleScholarGoogle Scholar |

Landis MJ (2019) Introduction to phylogenetic models of discrete biogeography. Overview of the dispersal–extirpation–cladogenesis (DEC) model. Available at https://revbayes.github.io/tutorials/biogeo/biogeo_intro.html

Landis, MJ, Matzke, NJ, Moore, BR, and Huelsenbeck, JP (2013). Bayesian analysis of biogeography when the number of areas is large. Systematic Biology 62, 789–804.
Bayesian analysis of biogeography when the number of areas is large.Crossref | GoogleScholarGoogle Scholar |

Larsson, A (2014). AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30, 3276–3278.
AliView: a fast and lightweight alignment viewer and editor for large data sets.Crossref | GoogleScholarGoogle Scholar |

Laurin, M (2010). The subjective nature of Linnaean categories and its impact in evolutionary biology and biodiversity studies. Contributions to Zoology 79, 131–146.
The subjective nature of Linnaean categories and its impact in evolutionary biology and biodiversity studies.Crossref | GoogleScholarGoogle Scholar |

Leach WE (1820) Galatéadées. In ‘Dictionnaire des Sciences Naturelles’. (FG Levreault: Paris, France)

Lefort, V, Longueville, J-E, and Gascuel, O (2017). SMS: smart model selection in PhyML. Molecular Biology and Evolution 34, 2422–2424.
SMS: smart model selection in PhyML.Crossref | GoogleScholarGoogle Scholar |

León, R, Castro, LR, and Cáceres, M (2008). Dispersal of Munida gregaria (Decapoda: Galatheidae) larvae in Patagonian channels of southern Chile. ICES Journal of Marine Science 65, 1131–1143.
Dispersal of Munida gregaria (Decapoda: Galatheidae) larvae in Patagonian channels of southern Chile.Crossref | GoogleScholarGoogle Scholar |

Li, C, Kou, Q, Zhang, Z, Hu, L, Huang, W, Cui, Z, Liu, Y, Ma, P, and Wang, H (2021). Reconstruction of the evolutionary biogeography reveal the origins and diversification of oysters (Bivalvia: Ostreidae). Molecular Phylogenetics and Evolution 164, 107268.
Reconstruction of the evolutionary biogeography reveal the origins and diversification of oysters (Bivalvia: Ostreidae).Crossref | GoogleScholarGoogle Scholar |

Lins, LSF, Ho, SYW, Wilson, GDF, and Lo, N (2012). Evidence for Permo-Triassic colonization of the deep sea by isopods. Biology Letters 8, 979–982.
Evidence for Permo-Triassic colonization of the deep sea by isopods.Crossref | GoogleScholarGoogle Scholar |

Lovrich GA, Thiel M (2011) Chapter 6. Ecology, physiology, feeding and trophic role of squat lobsters. In ‘The biology of squat lobsters’. (Eds GCB Poore, ST Ahyong, J Taylor) pp. 182–222. (CSIRO Publishing: Melbourne, Vic., Australia)

Lovrich, GA, Casalinuovo, M, Molina, S, Carcamo, C, and Pierotti, R (1998). Las langostillas Munida subrugosa y M. gregaria (Decapoda, Anomura) como potencial recurso económico patagónico. Naturalia Patagónica, Ciencias Biológicas 6, 89–92.

Lucas H (1840) ‘Histoire naturelle des animaux articulés. Histoire naturelle des Crustacés, Arachnides et des Myriapodes.’ (Duméril: Paris, France)

McCallum, AW, Ahyong, ST, and Andreakis, N (2021). New species of squat lobsters of the genus Munida from Australia. Memoirs of Museum Victoria 80, 113–152.
New species of squat lobsters of the genus Munida from Australia.Crossref | GoogleScholarGoogle Scholar |

Machordom, A, and Macpherson, E (2004). Rapid radiation and cryptic speciation in squat lobsters of the genus Munida (Crustacea, Decapoda) and related genera in the South West Pacific: molecular and morphological evidence. Molecular Phylogenetics and Evolution 33, 259–279.
Rapid radiation and cryptic speciation in squat lobsters of the genus Munida (Crustacea, Decapoda) and related genera in the South West Pacific: molecular and morphological evidence.Crossref | GoogleScholarGoogle Scholar |

Macpherson, E (1998). A new genus of Galatheidae (Crustacea, Anomura) from the western Pacific Ocean. Zoosystema 20, 351–355.

Macpherson, E (2006). Galatheidae (Crustacea, Decapoda) from the Austral Islands, Central Pacific. In “Tropical Deep-Sea Benthos. Vol. 24” (Eds B Richer de Forges, J L Justine). Mémoires du Muséum National d’Histoire Naturelle, Paris 193, 285–333.

Macpherson E, Baba K (2011) Taxonomy of squat lobsters. In ‘The Biology of Squat Lobsters’. (Eds GCB Poore, S Ahyong, J Taylor) pp. 39–71. (CSIRO Publishing: Melbourne, Vic., Australia)

Macpherson, E, and Machordom, A (2000). Raymunida, new genus (Decapoda: Anomura: Galatheidae) from the Indian and Pacific oceans. Journal of Crustacean Biology 20, 253–258.
Raymunida, new genus (Decapoda: Anomura: Galatheidae) from the Indian and Pacific oceans.Crossref | GoogleScholarGoogle Scholar |

Macpherson, E, and Machordom, A (2001). Phylogenetic relationships of species of Raymunida (Decapoda: Galatheidae) based on morphology and mitochondrial cytochrome oxidase sequences, with the recognition of four new species. Journal of Crustacean Biology 21, 696–714.
Phylogenetic relationships of species of Raymunida (Decapoda: Galatheidae) based on morphology and mitochondrial cytochrome oxidase sequences, with the recognition of four new species.Crossref | GoogleScholarGoogle Scholar |

Macpherson, E, de Forges, BR, Schnabel, K, Samadi, S, Boisselier, MC, and Garcia-Rubies, A (2010). Biogeography of the deep-sea galatheid squat lobsters of the Pacific Ocean. Deep-Sea Research – Part I: Oceanographic Research Papers 57, 228–238.
Biogeography of the deep-sea galatheid squat lobsters of the Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Macpherson E, Rodríguez-Flores PC, Machordom A, (in press) A checklist of the Galatheoid squat lobsters from the South-West Indian Ocean (Decapoda: Anomura: Galatheoidea), with the description of four new species. Mémoires du Muséum National d’Histoire Naturelle – Tropical Deep-Sea Benthos.

Massana, KA, Beaulieu, JM, Matzke, NJ, and O’Meara, BCO (2015). Non-null effects of the null range in biogeographic models: exploring parameter estimation in the DEC model. bioRxiv , 026914.
Non-null effects of the null range in biogeographic models: exploring parameter estimation in the DEC model.Crossref | GoogleScholarGoogle Scholar |

Matthews, LH (1932). Lobster-krill. Anomuran Crustacea that are the food of whales. Discovery Reports 5, 467–484.

Matzke, NJ (2013). Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography 5, 242–248.
Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing.Crossref | GoogleScholarGoogle Scholar |

Matzke, NJ (2014). Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology 63, 951–970.
Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades.Crossref | GoogleScholarGoogle Scholar |

Miers, EJ (1881). Zoological collections made during the survey of H.M.S ‘Alert’. Crustacea. Proceedings of the Scientific Meetings of the Zoological Society of London 1881, 61–79.

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 Nov. 2010, New Orleans, LA. pp. 1–8.
| Crossref |

Milne Edwards H (1837) ‘Histoire naturelle des crustacés, comprenant l’anatomie, la physiologie et la classification de ces animaux.’ (Libraire Encyclopédique de Roret: Paris, France)

Miralles, A, and Vences, M (2013). New metrics for comparison of taxonomies reveal striking discrepancies among species delimitation methods in Madascincus lizards. PLoS One 8, e68242.
New metrics for comparison of taxonomies reveal striking discrepancies among species delimitation methods in Madascincus lizards.Crossref | GoogleScholarGoogle Scholar |

Miranda I, Peres P, Tavares MDS, Mantelatto FL (2021) New molecular data on squat lobster from the coast of São Paulo State (Brazil) (Anomura: Munida and Agononida) and insights on the systematics of the Family Munididae. Chapter 14. In ‘Deep-sea Pycogonids and Crustaceans of the Americas’. (Ed. ME Hendrickx) pp. 343–356. (Springer Nature: Cham, Switzerland)
| Crossref |

Müller, P, and Collins, JSH (1991). Late Eocene coral-associated decapods (Crustacea) from Hungary. Contributions to Tertiary and Quaternary Geology 28, 47–92.

Nagy, J (2020). Biologia Futura: rapid diversification and behavioural adaptation of birds in response to Oligocene–Miocene climatic conditions. Biologia Futura 71, 109–121.
Biologia Futura: rapid diversification and behavioural adaptation of birds in response to Oligocene–Miocene climatic conditions.Crossref | GoogleScholarGoogle Scholar |

Ortmann, AE (1892). Die Decapoden-Krebse des Strassburger Museums, mit besonderer Berücksichtigung der von Herrn Dr. Döderlein bei Japan und bei den Liu-Kiu-Inseln gesammelten und zur Zeit im Strassburger Museum aufbewahrten Formen. IV. Die Abteilungen Galatheidea und Paguridea. Zoologische Jahrbücher, Abteilung für Systematik, Geographie und Biologie der Tiere 6, 241–326.

Ortmann, AE (1894). Crustaceen. Denkschriften der Medicinisch-Naturwissenschaftlichen Gesellschaft zu Jena 8, 3–80.

Palero, F, Crandall, KA, Abelló, P, Macpherson, E, and Pascual, M (2009). Phylogenetic relationships between spiny, slipper and coral lobsters (Crustacea, Decapoda, Achelata). Molecular Phylogenetics and Evolution 50, 152–162.
Phylogenetic relationships between spiny, slipper and coral lobsters (Crustacea, Decapoda, Achelata).Crossref | GoogleScholarGoogle Scholar |

Palero, F, Robainas-Barcia, A, Corbari, L, and Macpherson, E (2017). Phylogeny and evolution of shallow‐water squat lobsters (Decapoda, Galatheoidea) from the Indo‐Pacific. Zoologica Scripta 46, 584–595.
Phylogeny and evolution of shallow‐water squat lobsters (Decapoda, Galatheoidea) from the Indo‐Pacific.Crossref | GoogleScholarGoogle Scholar |

Palero, F, Rodríguez-Flores, PC, Cabezas, P, Machordom, A, Macpherson, E, and Corbari, L (2019). Evolution of squat lobsters (Crustacea, Galatheoidea): mitogenomic data suggest an early divergent Porcellanidae. Hydrobiologia 833, 173–184.
Evolution of squat lobsters (Crustacea, Galatheoidea): mitogenomic data suggest an early divergent Porcellanidae.Crossref | GoogleScholarGoogle Scholar |

Parker, AR, Mckenzie, DR, and Ahyong, ST (1998). A unique form of light reflector and the evolution of signalling in Ovalipes (Crustacea: Decapoda: Portunidae). Proceedings of the Royal Society of London. Series B: Biological Sciences 265, 861–867.
A unique form of light reflector and the evolution of signalling in Ovalipes (Crustacea: Decapoda: Portunidae).Crossref | GoogleScholarGoogle Scholar |

Parker, AR, McPhedran, RC, McKenzie, DR, Botten, LC, and Nicorovici, N-AP (2001). Aphrodite’s iridescence. Nature 409, 36–37.
Aphrodite’s iridescence.Crossref | GoogleScholarGoogle Scholar |

Pérez-Barros, P, d’Amato, ME, Guzmán, NV, and Lovrich, GA (2008). Taxonomic status of two South American sympatric squat lobsters, Munida gregaria and Munida subrugosa (Crustacea: Decapoda: Galatheidae), challenged by DNA sequence information. Biological Journal of the Linnean Society 94, 421–434.
Taxonomic status of two South American sympatric squat lobsters, Munida gregaria and Munida subrugosa (Crustacea: Decapoda: Galatheidae), challenged by DNA sequence information.Crossref | GoogleScholarGoogle Scholar |

Poore, GCB (2004) ‘Marine decapod Crustacea of southern Australia. A guide to identification.’ (CSIRO Publishing: Melbourne, Vic., Australia)

Poore, GC, and Andreakis, N (2012). The Agononida incerta species complex unravelled (Crustacea: Decapoda: Anomura: Munididae). Zootaxa 3492, 1–29.

Poore, GC, and Andreakis, N (2014). More species of the Agononida incerta complex revealed by molecules and morphology (Crustacea: Decapoda: Anomura: Munididae). Zootaxa 3860, 201–225.
More species of the Agononida incerta complex revealed by molecules and morphology (Crustacea: Decapoda: Anomura: Munididae).Crossref | GoogleScholarGoogle Scholar |

Rambaut, A, Drummond, AJ, Xie, D, Baele, G, and Suchard, MA (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901–904.
Posterior summarization in Bayesian phylogenetics using Tracer 1.7.Crossref | GoogleScholarGoogle Scholar |

Read, CI, Bellwood, DR, and van Herwerden, L (2006). Ancient origins of Indo-Pacific coral reef fish biodiversity: A case study of the leopard wrasses (Labridae: Macropharyngodon). Molecular Phylogenetics and Evolution 38, 808–819.
Ancient origins of Indo-Pacific coral reef fish biodiversity: A case study of the leopard wrasses (Labridae: Macropharyngodon).Crossref | GoogleScholarGoogle Scholar |

Ree, RH, and Sanmartín, I (2018). Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. Journal of Biogeography 45, 741–749.
Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection.Crossref | GoogleScholarGoogle Scholar |

Ree, RH, Moore, BR, Webb, CO, and Donoghue, MJ (2005). A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 2299–2311.
A likelihood framework for inferring the evolution of geographic range on phylogenetic trees.Crossref | GoogleScholarGoogle Scholar |

Renema W (2007) Fauna development of larger benthic Foraminifera in the Cenozoic of Southeast Asia. In ‘Biogeography, Time and Place: Distributions, Barriers and Islands’. (Ed. W Renema) pp. 179–215. (Springer: Dordrecht, The Netherlands)
| Crossref |

Renema, W, Bellwood, DR, Braga, JC, Bromfield, K, Hall, R, Johnson, KG, Lunt, P, Meyer, CP, McMonagle, LB, Morley, RJ, O’Dea, A, Todd, JA, Wesselingh, FP, Wilson, MEJ, and Pandolfi, JM (2008). Hopping hotspots: global shifts in marine biodiversity. Science 321, 654–657.
Hopping hotspots: global shifts in marine biodiversity.Crossref | GoogleScholarGoogle Scholar |

Rex, MA, Crame, JA, Stuart, CT, and Clarke, A (2005). Large-scale biogeographic patterns in marine mollusks: a confluence of history and productivity? Ecology 86, 2288–2297.
Large-scale biogeographic patterns in marine mollusks: a confluence of history and productivity?Crossref | GoogleScholarGoogle Scholar |

Ribeiro, E, Davis, AM, Rivero-Vega, RA, Ortí, G, and Betancur-R, R (2018). Post-Cretaceous bursts of evolution along the benthic-pelagic axis in marine fishes. Proceedings of the Royal Society B: Biological Sciences 285, 20182010.
Post-Cretaceous bursts of evolution along the benthic-pelagic axis in marine fishes.Crossref | GoogleScholarGoogle Scholar |

Riehl, T, Wölfl, A-C, Augustin, N, Devey, CW, and Brandt, A (2020). Discovery of widely available abyssal rock patches reveals overlooked habitat type and prompts rethinking deep-sea biodiversity. Proceedings of the National Academy of Sciences 117, 15450–15459.
Discovery of widely available abyssal rock patches reveals overlooked habitat type and prompts rethinking deep-sea biodiversity.Crossref | GoogleScholarGoogle Scholar |

Rivadeneira MM, Poore GCB (2020) Latitudinal gradients of diversity of marine crustaceans: towards a synthesis. In ‘The Natural History of the Crustacea. Evolution and Biogeography’. (Eds GCB Poore, M Thiel) pp. 389–412. (Oxford University Press: New York, NY, USA)

Robins, CM, and Klompmaker, AA (2019). Extreme diversity and parasitism of Late Jurassic squat lobsters (Decapoda: Galatheoidea) and the oldest records of porcellanids and galatheids. Zoological Journal of the Linnean Society 187, 1131–1154.
Extreme diversity and parasitism of Late Jurassic squat lobsters (Decapoda: Galatheoidea) and the oldest records of porcellanids and galatheids.Crossref | GoogleScholarGoogle Scholar |

Robins, CM, Feldmann, RM, and Schweitzer, CE (2012). The oldest Munididae (Decapoda: Anomura: Galatheoidea) from Ernstbrunn, Austria (Tithonian). Annalen des naturhistorischen Museums in Wien 114, 289–300.

Robins, CM, Feldmann, RM, and Schweitzer, CE (2013). Nine new genera and 24 new species of the Munidopsidae (Decapoda: Anomura: Galatheoidea) from the Jurassic Ernstbrunn Limestone of Austria, and notes on fossil munidopsid classification. Annalen des naturhistorischen Museums in Wien 115, 167–251.

Rodríguez-Flores, PC, Macpherson, E, Buckley, D, and Machordom, A (2019a). High morphological similarity coupled with high genetic differentiation in new sympatric species of coral-reef squat lobsters (Crustacea: Decapoda: Galatheidae). Zoological Journal of the Linnean Society 185, 984–1017.
High morphological similarity coupled with high genetic differentiation in new sympatric species of coral-reef squat lobsters (Crustacea: Decapoda: Galatheidae).Crossref | GoogleScholarGoogle Scholar |

Rodríguez-Flores, PC, Machordom, A, Abelló, P, Cuesta, JA, and Macpherson, E (2019b). Species delimitation and multi-locus species tree solve an old taxonomic problem for European squat lobsters of the genus Munida Leach, 1820. Marine Biodiversity 49, 1751–1773.
Species delimitation and multi-locus species tree solve an old taxonomic problem for European squat lobsters of the genus Munida Leach, 1820.Crossref | GoogleScholarGoogle Scholar |

Rodríguez-Flores, PC, Buckley, D, Macpherson, E, Corbari, L, and Machordom, A (2020). Deep-sea squat lobster biogeography (Munidopsidae: Leiogalathea) unveils Tethyan vicariance and evolutionary patterns shared by shallow-water relatives. Zoologica Scripta 49, 340–356.
Deep-sea squat lobster biogeography (Munidopsidae: Leiogalathea) unveils Tethyan vicariance and evolutionary patterns shared by shallow-water relatives.Crossref | GoogleScholarGoogle Scholar |

Rodríguez-Flores, PC, Macpherson, E, Schnabel, K, Ahyong, ST, Corbari, L, and Machordom, A (2022). Depth as a driver of evolution and diversification of ancient squat lobsters (Decapoda, Galatheoidea, Phylladiorhynchus). Molecular Phylogenetics and Evolution 171, 107467.
Depth as a driver of evolution and diversification of ancient squat lobsters (Decapoda, Galatheoidea, Phylladiorhynchus).Crossref | GoogleScholarGoogle Scholar |

Rögl, F (1998). Paleogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Annales des Naturhistorisches Museums Wien 99A, 279–310.

Ronquist, F (1997). Dispersal-Vicariance Analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46, 195–203.
Dispersal-Vicariance Analysis: a new approach to the quantification of historical biogeography.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F, Teslenko, M, van der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA, and Huelsenbeck, JP (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Samouelle G (1819) ‘The entomologists’ useful compendium; or an introduction to the knowledge of British Insects, comprising the best means of obtaining and preserving them, and a description of the apparatus generally used; together with the genera of Linné, and modern methods of arranging the Classes Crustacea, Myriapoda, spiders, mites and insects, from their affinities and structure, according to the views of Dr. Leach. Also an explanation of the terms used in entomology; a calendar of the times of appearance and usual situations of near 3,000 species of British Insects; with instructions for collecting and fitting up objects for the microscope.’ (Thomas Boys: London, UK)

Schmitt, WL (1921). The marine decapod Crustacea of California with special reference to the decapod Crustacea collected by the United States Bureau of Fisheries Steamer Albatross in connection with the biological survey of San Francisco Bay during the years 1912–1913. University of California Publications in Zoology 23, 1–359.

Schnabel KE, Cabezas P, McCallum A, Macpherson E, Ahyong ST, Baba K (2011a) World-wide distribution patterns of squat lobsters. In ‘The biology of squat lobsters’. (Eds GCB Poore, ST Ahyong, J Taylor) pp. 149–182. (CSIRO Publishing: Melbourne, Vic., Australia)

Schnabel, KE, Ahyong, ST, and Maas, EW (2011b). Galatheoidea are not monophyletic – molecular and morphological phylogeny of the squat lobsters (Decapoda: Anomura) with recognition of a new superfamily. Molecular Phylogenetics and Evolution 58, 157–168.

Schweitzer, CE, and Feldmann, RM (2000). First notice of the Chirostylidae (Decapoda) in the fossil record and new Tertiary Galatheidae (Decapoda) from the Americas. Bulletin of the Mizunami fossil Museum 27, 147–165.

Sigwart, JD, Sutton, MD, and Bennett, KD (2018). How big is a genus? Towards a nomothetic systematics. Zoological Journal of the Linnean Society 183, 237–252.
How big is a genus? Towards a nomothetic systematics.Crossref | GoogleScholarGoogle Scholar |

Smith, UE, and Hendricks, JR (2013). Geometric morphometric character suites as phylogenetic data: extracting phylogenetic signal from gastropod shells. Systematics Biology 62, 366–385.
Geometric morphometric character suites as phylogenetic data: extracting phylogenetic signal from gastropod shells.Crossref | GoogleScholarGoogle Scholar |

Squires, HJ (1970). Decapod Crustacea of the Atlantic coast of Canada. Canadian Bulletin of Fisheries and Aquatic Sciences 221, 1–532.

Stebbing, TRR (1910). General catalogue of South African Crustacea (Part V. of S.A. Crustacea, for the Marine Investigations in South Africa). Annals of the South African Museum 6, 281–593.

Stimpson, W (1860). Notes on North American Crustacea, in the Museum of the Smithsonian Institution, No. II. Annals of the Lyceum of Natural History of New York 7, 177–246.

Suto, I (2006). The explosive diversification of the diatom genus Chaetoceros across the Eocene/Oligocene and Oligocene/Miocene boundaries in the Norwegian Sea. Marine Micropaleontology 58, 259–269.
The explosive diversification of the diatom genus Chaetoceros across the Eocene/Oligocene and Oligocene/Miocene boundaries in the Norwegian Sea.Crossref | GoogleScholarGoogle Scholar |

Swofford DL (2002) ‘PAUP*. Phylogenetic analysis using parsimony (* and other methods) Version 4.’ (Sinauer Associates: Sunderland, MA, USA)

Tan, MH, Gan, HM, Lee, YP, Linton, S, Grandjean, F, Bartholomei-Santos, ML, Miller, AD, and Austin, CM (2018). ORDER within the chaos: Insights into phylogenetic relationships within the Anomura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements. Molecular Phylogenetics and Evolution 127, 320–331.
ORDER within the chaos: Insights into phylogenetic relationships within the Anomura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements.Crossref | GoogleScholarGoogle Scholar |

Tapella, F, and Lovrich, GA (2006). Morphological differences between ‘subrugosa’ and ‘gregaria’ morphs of adult Munida (Decapoda: Anomura: Galatheidae) from the Beagle Channel, southern South America. Journal of the Marine Biological Association of the United Kingdom 86, 1149–1155.
Morphological differences between ‘subrugosa’ and ‘gregaria’ morphs of adult Munida (Decapoda: Anomura: Galatheidae) from the Beagle Channel, southern South America.Crossref | GoogleScholarGoogle Scholar |

Tapella F, Romero MC, Lovrich GA, Chizzini A (2002) Life history of the galatheid crab Munida subrugosa in subantarctic waters of the Beagle Channel, Argentina. In ‘Crabs in cold water regions: biology, management, and economics’. (Eds A Paul, E Dawe, R Elner, G Jamieson, G Kruse, R Otto, B Sainte-Marie, T Shirley, D Woodby) pp. 115–133. (University of Alaska Sea Grant College Program: Fairbanks, USA)

Tirmizi NM, Javed W (1993) ‘Indian Ocean galatheids (Crustacea: Anomura).’ (Marine Reference Collection and Resource Centre, University of Karachi: Karachi, Pakistan)

Valdecasas, AG, Peláez, ML, and Wheeler, QD (2014). What’s in a (biological) name? The wrath of Lord Rutherford. Cladistics 30, 215–223.
What’s in a (biological) name? The wrath of Lord Rutherford.Crossref | GoogleScholarGoogle Scholar |

Varisco, M, and Vinuesa, J (2010). Occurrence of pelagic juveniles of Munida gregaria (Fabricius, 1793) (Anomura, Galatheidae) in San Jorge Gulf, Argentina. Crustaceana 83, 1147–1151.
Occurrence of pelagic juveniles of Munida gregaria (Fabricius, 1793) (Anomura, Galatheidae) in San Jorge Gulf, Argentina.Crossref | GoogleScholarGoogle Scholar |

Vrijenhoek, RC (2009). Cryptic species, phenotypic plasticity, and complex life histories: assessing deep-sea faunal diversity with molecular markers. Deep-Sea Research – Part II: Topical Studies in Oceanography 56, 1713–1723.
Cryptic species, phenotypic plasticity, and complex life histories: assessing deep-sea faunal diversity with molecular markers.Crossref | GoogleScholarGoogle Scholar |

White A (1847) ‘List of the specimens of Crustacea in the collection of the British Museum.’ (British Museum: London, UK)

White, BN (1988). Oceanic anoxic events and allopatric speciation in the deep sea. Biological Oceanography 5, 243–259.
Oceanic anoxic events and allopatric speciation in the deep sea.Crossref | GoogleScholarGoogle Scholar |

Williams, BG (1973). The effect of the environment on the morphology of Munida gregaria (Fabricius) (Decapoda, Anomura). Crustaceana 24, 197–210a.
The effect of the environment on the morphology of Munida gregaria (Fabricius) (Decapoda, Anomura).Crossref | GoogleScholarGoogle Scholar |

Williams, BG (1980). The pelagic and benthic phases of post-metamorphic Munida gregaria (Fabricius) (Decapoda, Anomura). Journal of Experimental Marine Biology and Ecology 42, 125–141.
The pelagic and benthic phases of post-metamorphic Munida gregaria (Fabricius) (Decapoda, Anomura).Crossref | GoogleScholarGoogle Scholar |

Williams, ST, and Duda, TF Jr (2008). Did tectonic activity stimulate Oligo–Miocene speciation in the Indo-West Pacific? Evolution 62, 1618–1634.
Did tectonic activity stimulate Oligo–Miocene speciation in the Indo-West Pacific?Crossref | GoogleScholarGoogle Scholar |

Williams, ST, and Reid, DG (2004). Speciation and diversity on tropical rocky shores: a global phylogeny of snails of the genus Echinolittorina. Evolution 58, 2227–2251.
Speciation and diversity on tropical rocky shores: a global phylogeny of snails of the genus Echinolittorina.Crossref | GoogleScholarGoogle Scholar |

Williams, ST, Smith, LM, Herbert, DG, Marshall, BA, Warén, A, Kiel, S, Dyal, P, Linse, K, Vilvens, C, and Kano, Y (2013). Cenozoic climate change and diversification on the continental shelf and slope: evolution of gastropod diversity in the family Solariellidae (Trochoidea). Ecology and Evolution 3, 887–917.
Cenozoic climate change and diversification on the continental shelf and slope: evolution of gastropod diversity in the family Solariellidae (Trochoidea).Crossref | GoogleScholarGoogle Scholar |

Yan, R-J, Schnabel, KE, Rowden, AA, Guo, X-Z, and Gardner, JPA (2020). Population structure and genetic connectivity of squat lobsters (Munida Leach, 1820) associated with vulnerable marine ecosystems in the Southwest Pacific Ocean. Frontiers in Marine Science 6, 791.
Population structure and genetic connectivity of squat lobsters (Munida Leach, 1820) associated with vulnerable marine ecosystems in the Southwest Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Zariquiey Álvarez, R (1968). Crustáceos decápodos Ibéricos. Investigación Pesquera 2, 1–510.