Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Evolutionary history of the Australasian Scirtinae (Scirtidae; Coleoptera) inferred from ultraconserved elements

Tessa M. Bradford https://orcid.org/0000-0003-0607-1398 A B * , Rafał Ruta https://orcid.org/0000-0001-8515-2385 C , Steven J. B. Cooper https://orcid.org/0000-0002-7843-8438 A B , María L. Libonatti https://orcid.org/0000-0003-2163-7046 D and Chris H. S. Watts A
+ Author Affiliations
- Author Affiliations

A South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

B The Australian Centre for Evolutionary Biology and Biodiversity and School of Biological Sciences, The University of Adelaide, SA 5005, Australia.

C Department of Biodiversity and Evolutionary Taxonomy, University of Wrocław, Przybyszewskiego 65, PL-51-148 Wrocław, Poland.

D Laboratorio de Entomología, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Avenida Int. Güiraldes 2160 Ciudad Universitaria, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina.


Handling Editor: Bruno de Medeiros

Invertebrate Systematics 36(4) 291-305 https://doi.org/10.1071/IS21053
Submitted: 19 July 2021  Accepted: 11 January 2022   Published: 4 May 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

The Scirtidae Fleming, 1821 has been identified as one of the earliest diverging groups of Polyphagan beetles and is particularly speciose in Australia. However, very little is known about the origin of the Australian scirtids and there is a need for a robust, well-supported phylogeny to guide the genus and species descriptions and understand the relationships among taxa. In this study we carried out a phylogenetic analysis of the Australian Scirtinae Fleming, 1821, using DNA sequence data from ultraconserved elements (UCEs) and included representative taxa from New Zealand, New Caledonia, South America, South Africa and Eurasia in the analysis. Bayesian analyses of a concatenated dataset from 79 taxa recovered four major Southern Hemisphere groupings and two Australian–Eurasian groupings. The Veronatus group mainly consisted of genera from New Zealand, with the three Australian representatives only distantly related to each other. Relaxed molecular clock analyses, using the estimated age of the crown node of the Polyphaga for calibration, support a Gondwanan history for four of the groups of Australian Scirtinae and a northern origin for two groups. Our results highlight the value of commercially available UCEs for resolving the phylogenetic history of ancient groups of Coleoptera.

Keywords: biogeography, Marsh beetles, phylogenomics, Scirtinae, systematics, UCEs, ultraconserved elements.


References

Aberer, AJ, Kobert, K, and Stamatakis, A (2014). ExaBayes: massively parallel Bayesian tree inference for the whole-genome era. Molecular Biology and Evolution 31, 2553–2556.
ExaBayes: massively parallel Bayesian tree inference for the whole-genome era.Crossref | GoogleScholarGoogle Scholar | 25135941PubMed |

Allio, R, Schomaker-Bastos, A, Romiguier, J, Prosdocimi, F, Nabholz, B, and Delsuc, F (2020). MitoFinder: efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Molecular Ecology Resources 20, 892–905.
MitoFinder: efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics.Crossref | GoogleScholarGoogle Scholar | 32243090PubMed |

Altschul, SF, Gish, W, Miller, W, Myers, EW, and Lipman, DJ (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.
Basic local alignment search tool.Crossref | GoogleScholarGoogle Scholar | 2231712PubMed |

Baca, SM, Alexander, A, Gustafson, GT, and Short, AEZ (2017). Ultraconserved elements show utility in phylogenetic inference of Adephaga (Coleoptera) and suggest paraphyly of ‘Hydradephaga’. Systematic Entomology 42, 786–795.
Ultraconserved elements show utility in phylogenetic inference of Adephaga (Coleoptera) and suggest paraphyly of ‘Hydradephaga’.Crossref | GoogleScholarGoogle Scholar |

Baca, SM, Gustafson, GT, Alexander, AM, Gough, HM, and Toussaint, EFA (2021). Integrative phylogenomics reveals a Permian origin of Adephaga beetles. Systematic Entomology 46, 968–990.
Integrative phylogenomics reveals a Permian origin of Adephaga beetles.Crossref | GoogleScholarGoogle Scholar |

Bertheau, C, Schuler, H, Krumböck, S, Arthofer, W, and Stauffer, C (2011). Hit or miss in phylogeographic analyses: the case of the cryptic NUMTs. Molecular Ecology Resources 11, 1056–1059.
Hit or miss in phylogeographic analyses: the case of the cryptic NUMTs.Crossref | GoogleScholarGoogle Scholar | 21791032PubMed |

Bolger, AM, Lohse, M, and Usadel, B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.
Trimmomatic: a flexible trimmer for Illumina sequence data.Crossref | GoogleScholarGoogle Scholar | 24695404PubMed |

Bouckaert, RR, and Drummond, AJ (2017). bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology 17, 42.
bModelTest: Bayesian phylogenetic site model averaging and model comparison.Crossref | GoogleScholarGoogle Scholar | 28166715PubMed |

Bouckaert, R, Heled, J, Kuehnert, D, Vaughan, T, Wu, C-H, Xie, D, Suchard, MA, Rambaut, A, and Drummond, AJ (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
BEAST 2: a software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar | 24722319PubMed |

Brown, JW, Walker, JF, and Smith, SA (2017). Phyx: phylogenetic tools for unix. Bioinformatics 33, 1886–1888.
Phyx: phylogenetic tools for unix.Crossref | GoogleScholarGoogle Scholar | 28174903PubMed |

Buckley, TR, Lord, NP, Ramón-Laca, A, Allwood, JS, and Leschen, RAB (2019). Multiple lineages of hyper-diverse Zopheridae beetles survived the New Zealand Oligocene Drowning. Journal of Biogeography 47, 927–940.
Multiple lineages of hyper-diverse Zopheridae beetles survived the New Zealand Oligocene Drowning.Crossref | GoogleScholarGoogle Scholar |

Cooper, SJB, Watts, CHS, Saint, KM, and Leijs, R (2014). Phylogenetic relationships of Australian Scirtidae (Coleoptera) based on mitochondrial and nuclear sequences. Invertebrate Systematics 28, 628–642.
Phylogenetic relationships of Australian Scirtidae (Coleoptera) based on mitochondrial and nuclear sequences.Crossref | GoogleScholarGoogle Scholar |

Crawford, NG, Faircloth, BC, McCormack, JE, Brumfield, RT, Winker, K, and Glenn, TC (2012). More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biology Letters 8, 783–786.
More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs.Crossref | GoogleScholarGoogle Scholar | 22593086PubMed |

Drummond, AJ, and Rambaut, A (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |

Drummond, AJ, Ho, SYW, Phillips, MJ, and Rambaut, A (2006). Relaxed Phylogenetics and Dating with Confidence. PLoS Biology 4, e88.
Relaxed Phylogenetics and Dating with Confidence.Crossref | GoogleScholarGoogle Scholar | 16683862PubMed |

Faircloth, BC (2016). PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32, 786–788.
PHYLUCE is a software package for the analysis of conserved genomic loci.Crossref | GoogleScholarGoogle Scholar | 26530724PubMed |

Faircloth, BC (2017). Identifying conserved genomic elements and designing universal bait sets to enrich them. Methods in Ecology and Evolution 8, 1103–1112.
Identifying conserved genomic elements and designing universal bait sets to enrich them.Crossref | GoogleScholarGoogle Scholar |

Faircloth, BC, McCormack, JE, Crawford, NG, Harvey, MG, Brumfield, RT, and Glenn, TC (2012). Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology 61, 717–726.
Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales.Crossref | GoogleScholarGoogle Scholar | 22232343PubMed |

Faircloth, BC, Branstetter, MG, White, ND, and Brady, SG (2015). Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Molecular Ecology Resources 15, 489–501.
Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera.Crossref | GoogleScholarGoogle Scholar | 25207863PubMed |

Fisher, S, Barry, A, Abreu, J, Minie, B, Nolan, J, Delorey, TM, Young, G, Fennell, TJ, Allen, A, Ambrogio, L, Berlin, AM, Blumenstiel, B, Cibulskis, K, Friedrich, D, Johnson, R, Juhn, F, Reilly, B, Shammas, R, Stalker, J, Sykes, SM, Thompson, J, Walsh, J, Zimmer, A, Zwirko, Z, Gabriel, S, Nicol, R, and Nusbaum, C (2011). A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biology , 12.
A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries.Crossref | GoogleScholarGoogle Scholar |

Gibbs G (2016) ‘Ghosts of Gondwana.’ (Potton & Burton: Nelson, New Zealand).

Giribet, G, and Boyer, SL (2010). ‘Moa’s Ark’ or ‘Goodbye Gondwana’: is the origin of New Zealand’s terrestrial invertebrate fauna ancient, recent, or both? Invertebrate Systematics 24, 1–8.
‘Moa’s Ark’ or ‘Goodbye Gondwana’: is the origin of New Zealand’s terrestrial invertebrate fauna ancient, recent, or both?Crossref | GoogleScholarGoogle Scholar |

Grabherr, MG, Haas, BJ, Yassour, M, Levin, JZ, Thompson, DA, Amit, I, Adiconis, X, Fan, L, Raychowdhury, R, Zeng, Q, Chen, Z, Mauceli, E, Hacohen, N, Gnirke, A, Rhind, N, di Palma, F, Birren, BW, Nusbaum, C, Lindblad-Toh, K, Friedman, N, and Regev, A (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29, 644–652.
Full-length transcriptome assembly from RNA-Seq data without a reference genome.Crossref | GoogleScholarGoogle Scholar | 21572440PubMed |

Gustafson, GT, Baca, SM, Alexander, AM, and Short, AE (2020). Phylogenomic analysis of the beetle suborder Adephaga with comparison of tailored and generalized ultraconserved element probe performance. Systematic Entomology 45, 552–570.
Phylogenomic analysis of the beetle suborder Adephaga with comparison of tailored and generalized ultraconserved element probe performance.Crossref | GoogleScholarGoogle Scholar |

Harris RS (2007) Improved pairwise alignment of genomic DNA. PhD thesis, The Pennsylvania State University, USA.

Hunt, T, Bergsten, J, Levkanicova, Z, Papadopoulou, A, St. John, O, Wild, R, Hammond, PM, Ahrens, D, Balke, M, Caterino, MS, Gómez-Zurita, J, Ribera, I, Barraclough, TG, Bocakova, M, Bocak, L, and Vogler, AP (2007). A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318, 1913–1916.
A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation.Crossref | GoogleScholarGoogle Scholar | 18096805PubMed |

Jell PA, Duncan PM (1986) Invertebrates, mainly insects, from the freshwater, Lower Cretaceous, Koonwarra fossil bed (Korumburra group), South Gippsland, Victoria. In ‘Plants and invertebrates from the Lower Cretaceous Koonwarra fossil bed, South Gippsland, Victoria’. (Eds PA Jell, J Roberts) pp. 111–205. (Association of Australasian Palaeontologists: Sydney, NSW, Australia)

Kasap, H, and Crowson, RA (1975). A comparative anatomical study of Elateriformia and Dascilloidea (Coleoptera). Transactions of the Royal Entomological Society of London 126, 441–495.
A comparative anatomical study of Elateriformia and Dascilloidea (Coleoptera).Crossref | GoogleScholarGoogle Scholar |

Katoh, K, and Standley, DM (2013). MAFFT multiple Sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple Sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Kiałka, A, and Ruta, R (2017). An illustrated catalogue of the New Zealand marsh beetles (Coleoptera: Scirtidae). Zootaxa 4366, 1–76.
An illustrated catalogue of the New Zealand marsh beetles (Coleoptera: Scirtidae).Crossref | GoogleScholarGoogle Scholar | 29686186PubMed |

Kiałka, A, and Ruta, R (2018). Meatopida gen. nov., a new genus to accommodate two species originally described in Atopida White, 1846 (Coleoptera: Scirtoidea: Scirtidae). Zootaxa 4382, 242–260.
Meatopida gen. nov., a new genus to accommodate two species originally described in Atopida White, 1846 (Coleoptera: Scirtoidea: Scirtidae).Crossref | GoogleScholarGoogle Scholar | 29689918PubMed |

Klausnitzer, B (2006). Arten der Gattung Cyphon Paykull, 1799 mit entwickeltem 8. Sternit und Beschreibung einer neuen Gattung (Col., Scirtidae). Entomologische Nachrichten und Berichte 50, 71–77.

Ladiges, PY, and Cantrill, D (2007). New Caledonia–Australian connections: biogeographic patterns and geology. Australian Systematic Botany 20, 383–389.
New Caledonia–Australian connections: biogeographic patterns and geology.Crossref | GoogleScholarGoogle Scholar |

Lanfear, R, Calcott, B, Kainer, D, Mayer, C, and Stamatakis, A (2014). Selecting optimal partitioning schemes for phylogenomic datasets. BMC Ecology and Evolution 14, 82.
Selecting optimal partitioning schemes for phylogenomic datasets.Crossref | GoogleScholarGoogle Scholar |

Lanfear, R, Frandsen, PB, Wright, AM, Senfeld, T, and Calcott, B (2016). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Lawrence, JF (2001). A new genus of Valdivian Scirtidae (Coleoptera) with comments on Scirtoidea and the beetle suborders. Special Publication of the Japan Coleopterological Society 1, 351–361.

Lawrence JF (2019) Chapter 14. Superfamily Scirtoidea Fleming, 1821. In ‘Australian Beetles Vol. 2.’ (Eds SA Ślipiński, JF Lawrence), pp. 219–220. (CSIRO Publishing: Melbourne, Vic., Australia)

Lawrence JF, Newton, AF (1995). Families and subfamilies of Coleoptera (with selected genera, notes, references and data on family-grupu names). In ‘Biology, Phylogeny, and Classification of Coleoptera: Papers Celebrating the 80th Birthday of Roy A. Crowson.’ (Eds J Pakaluk, SA Ślipiński), pp. 779–1007. (Muzeum i Instytut Zoologii PAN: Warszawa, Poland)

Lawrence, JF, and Yoshitomi, H (2007). Nipponocyphon, a new genus of Japanese Scirtidae (Coleoptera) and its phylogenetic significance. Elytra 35, 507–527.

Li, C, Hofreiter, M, Straube, N, Corrigan, S, and Naylor, GJP (2013). Capturing protein-coding genes across highly divergent species. BioTechniques 54, 321–326.
Capturing protein-coding genes across highly divergent species.Crossref | GoogleScholarGoogle Scholar | 23758502PubMed |

Libonatti, ML, and Ruta, R (2013). Review of the Argentinean species of Pseudomicrocara Armstrong (Coleoptera: Scirtidae). Zootaxa 3718, 137–157.
Review of the Argentinean species of Pseudomicrocara Armstrong (Coleoptera: Scirtidae).Crossref | GoogleScholarGoogle Scholar | 26258215PubMed |

Libonatti ML, Ruta, R (2018). Chapter 15.7. Scirtidae. In ‘Keys to Neotropical Hexapoda. Thorp and Covich’s Freschwater Invertebrates – Vol. III.’ (Eds N Hamada, JH Thorp, DC Rogers), pp. 599–603. (Academic Press)

Livermore, R, Nankivell, A, Eagles, G, and Morris, P (2005). Paleogene opening of Drake Passage. Earth and Planetary Science Letters 236, 459–470.
Paleogene opening of Drake Passage.Crossref | GoogleScholarGoogle Scholar |

McCormack, JE, Faircloth, BC, Crawford, NG, Gowaty, PA, Brumfield, RT, and Glenn, TC (2012). Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species tree analysis. Genome Research 22, 746–754.
Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species tree analysis.Crossref | GoogleScholarGoogle Scholar | 22207614PubMed |

McCormack, JE, Harvey, MG, Faircloth, BC, Crawford, NG, Glenn, TC, and Brumfield, RT (2013). A phylogeny of birds based on over 1500 loci collected by target enrichment and high-throughput sequencing. PLoS One 8, e54848.
A phylogeny of birds based on over 1500 loci collected by target enrichment and high-throughput sequencing.Crossref | GoogleScholarGoogle Scholar | 23382987PubMed |

McKenna, DD, Wild, AL, Kanda, K, Bellamy, CL, Beutel, RG, Caterino, MS, Farnum, CW, Hawks, DC, Ivie, MA, Jameson, ML, Leschen, RAB, Marvaldi, AE, McHugh, JV, Newton, AF, Robertson, JA, Thayer, MK, Whiting, MF, Lawrence, JF, Ślipiński, A, Maddison, DR, and Farrell, BD (2015). The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Systematic Entomology 40, 835–880.
The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution.Crossref | GoogleScholarGoogle Scholar |

McKenna, DD, Shin, S, Ahrens, D, Balke, M, Beza-Beza, C, Clarke, DJ, Donath, A, Escalona, HE, Friedrich, F, Letsch, H, Liu, S, Maddison, D, Mayer, C, Misof, B, Murin, PJ, Niehuis, O, Peters, RS, Podsiadlowski, L, Pohl, H, Scully, ED, Yan, EV, Zhou, X, Ślipiński, A, and Beutel, RG (2019). The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences 116, 24729–24737.
The evolution and genomic basis of beetle diversity.Crossref | GoogleScholarGoogle Scholar |

Meyer, M, and Kircher, M (2010). Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protocols 2010, pdb.prot5448.
Illumina sequencing library preparation for highly multiplexed target capture and sequencing.Crossref | GoogleScholarGoogle Scholar | 20516186PubMed |

Meza-Lázaro, RN, Poteaux, C, Bayona-Vásquez, NJ, Branstetter, MG, and Zaldívar-Riverón, A (2018). Extensive mitochondrial heteroplasmy in the neotropical ants of the Ectatomma ruidum complex (Formicidae: Ectatomminae). Mitochondrial DNA – A. DNA Mapping, Sequencing, and Analysis 29, 1203–1214.
Extensive mitochondrial heteroplasmy in the neotropical ants of the Ectatomma ruidum complex (Formicidae: Ectatomminae).Crossref | GoogleScholarGoogle Scholar |

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number 11705685. (IEEE)
| Crossref |

Nyholm, T (1999). New species, taxonomic notes, and genitalia of New Zealand Cyphon (Coleoptera, Scirtidae).  New Zealand Entomologist 22, 45–67.
New species, taxonomic notes, and genitalia of New Zealand Cyphon (Coleoptera, Scirtidae). Crossref | GoogleScholarGoogle Scholar |

Nyholm, T (2002). Scirtes japonicus Kiesenwetter and its allies with descriptions of Scirtes ussuriensis n. sp. (Coleoptera Scirtidae). Entomologische Blätter 98, 49–60.

Rambaut, A, Drummond, AJ, Xie, D, Baele, G, and Suchard, MA (2018). Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901–904.
Posterior summarisation in Bayesian phylogenetics using Tracer 1.7.Crossref | GoogleScholarGoogle Scholar | 29718447PubMed |

Ruta, R (2021). Three new genera of large marsh beetles (Coleoptera: Scirtidae) from Valdivian temperate rain forests of southern South America. Zootaxa 5048, 451–485.
Three new genera of large marsh beetles (Coleoptera: Scirtidae) from Valdivian temperate rain forests of southern South America.Crossref | GoogleScholarGoogle Scholar | 34810789PubMed |

Ruta, R, Thorpe, S, and Yoshitomi, H (2011). Stenocyphon neozealandicus, a new species from New Zealand of a previously monotypic subfamily from Chile (Coleoptera: Scirtidae: Stenocyphoninae). Zootaxa 3113, 65–68.
Stenocyphon neozealandicus, a new species from New Zealand of a previously monotypic subfamily from Chile (Coleoptera: Scirtidae: Stenocyphoninae).Crossref | GoogleScholarGoogle Scholar |

Sato, JJ, Bradford, TM, Armstrong, KN, Donnellan, SC, Echenique-Diaz, LM, Begué-Quiala, G, Gámez-Díez, J, Yamaguchi, N, Nguyen, ST, Kita, M, and Ohdachi, SD (2019). Post K-Pg diversification of the mammalian order Eulipotyphla as suggested by phylogenomic analyses of ultra-conserved elements. Molecular Phylogenetics and Evolution 141, 106605.
Post K-Pg diversification of the mammalian order Eulipotyphla as suggested by phylogenomic analyses of ultra-conserved elements.Crossref | GoogleScholarGoogle Scholar | 31479732PubMed |

Sharp, D (1878). VI.—On the Dascillidæ of New Zealand. Annals and Magazine of Natural History 2, 40–59.
VI.—On the Dascillidæ of New Zealand.Crossref | GoogleScholarGoogle Scholar |

Smith, SA, Brown, JW, and Walker, JF (2018). So many genes, so little time: a practical approach to divergence-time estimation in the genomic era. PLoS One 13, e0197433.
So many genes, so little time: a practical approach to divergence-time estimation in the genomic era.Crossref | GoogleScholarGoogle Scholar | 29772020PubMed |

Stamatakis, A (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Tagliacollo, VA, and Lanfear, R (2018). Estimating improved partitioning schemes for ultraconserved elements. Molecular Biology and Evolution 35, 1798–1811.
Estimating improved partitioning schemes for ultraconserved elements.Crossref | GoogleScholarGoogle Scholar | 29659989PubMed |

Talavera, G, and Castresana, J (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar | 17654362PubMed |

Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In ‘Some Mathematical Questions in Biology – DNA Sequence Analysis.’ (Ed. RM Miura) pp. 57–86. (American Mathematical Society: Providence, RI, USA)

Van Dam, MH, Henderson, JB, Esposito, L, and Trautwein, M (2021). Genomic characterization and curation of UCEs improves species tree reconstruction. Systematic Biology 70, 307–321.
Genomic characterization and curation of UCEs improves species tree reconstruction.Crossref | GoogleScholarGoogle Scholar | 32750133PubMed |

Van Dam, MH, Lam, AW, Sagata, K, Gewa, B, Laufa, R, Balke, M, Faircloth, BC, and Riedel, A (2017). Ultraconserved elements (UCEs) resolve the phylogeny of Australasian smurf-weevils. PLoS One 12, e0188044.
Ultraconserved elements (UCEs) resolve the phylogeny of Australasian smurf-weevils.Crossref | GoogleScholarGoogle Scholar | 29166661PubMed |

Wang, LG, Lam, TTY, Xu, S, Dai, Z, Zhou, L, Feng, T, Guo, P, Dunn, CW, Jones, BR, Bradley, T, Zhu, H, Guan, Y, Jiang, Y, and Yu, G (2020). Treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. Molecular Biology and Evolution 37, 599–603.
Treeio: an R package for phylogenetic tree input and output with richly annotated and associated data.Crossref | GoogleScholarGoogle Scholar | 31633786PubMed |

Waters, JM, and Craw, D (2006). Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. Systematic Biology 55, 351–356.
Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity.Crossref | GoogleScholarGoogle Scholar | 16611605PubMed |

Watts, CHS (2004). Revision of Australian Scirtes Illiger and Ora Clark (Coleoptera: Scirtidae). Transactions of the Royal Society of South Australia 128, 131–168.

Watts, CHS (2007). Revision of Australian Pseudomicrocara Armstrong (Coleoptera: Scirtidae). Transactions of the Royal Society of South Australia 131, 1–82.
Revision of Australian Pseudomicrocara Armstrong (Coleoptera: Scirtidae).Crossref | GoogleScholarGoogle Scholar |

Watts, CHS (2010). Revision of Australian Prionocyphon Redtenbacher (Scirtidae: Coleoptera). Transactions of the Royal Society of South Australia 134, 53–88.
Revision of Australian Prionocyphon Redtenbacher (Scirtidae: Coleoptera).Crossref | GoogleScholarGoogle Scholar |

Watts, CHS (2011). Revision of Australian Scirtidae of the Genera Chameloscyphon gen. nov., Daploeuros gen. nov., Dasyscyphon gen. nov., Eurycyphon gen. nov., Macrodascillus Carter, Petrocyphon gen. nov. and Spaniosdascillus gen. nov. (Coleoptera). Transactions of the Royal Society of South Australia 135, 66–110.
Revision of Australian Scirtidae of the Genera Chameloscyphon gen. nov., Daploeuros gen. nov., Dasyscyphon gen. nov., Eurycyphon gen. nov., Macrodascillus Carter, Petrocyphon gen. nov. and Spaniosdascillus gen. nov. (Coleoptera).Crossref | GoogleScholarGoogle Scholar |

Watts, CHS (2014). The larvae of some Australian Scirtidae (Coleoptera) with a key to known genera. Transactions of the Royal Society of South Australia 138, 1–91.
The larvae of some Australian Scirtidae (Coleoptera) with a key to known genera.Crossref | GoogleScholarGoogle Scholar |

Watts CHS, Zwick P (2019). Chapter 15. Scirtidae Fleming, 1821. In ‘Australian Beetles’. (Eds SA Ślipiński and JF Lawrence) Vol. 2, pp. 221–248. (CSIRO Publishing: Melbourne, Vic., Australia)

Watts, CHS, Cooper, SJB, and Saint, KM (2017). Review of Australian Scirtes Illiger, Ora Clark and Exochomoscirtes Pic (Coleoptera: Scirtoidea) including descriptions of new species, new groups and a multi-gene molecular phylogeny of Australian and non-Australian species. Zootaxa 4347, 511–532.
Review of Australian Scirtes Illiger, Ora Clark and Exochomoscirtes Pic (Coleoptera: Scirtoidea) including descriptions of new species, new groups and a multi-gene molecular phylogeny of Australian and non-Australian species.Crossref | GoogleScholarGoogle Scholar | 29245582PubMed |

Watts, CHS, Bradford, TM, Cooper, SJB, and Libonatti, ML (2020). New genera, species and combinations in the Pseudomicrocara Armstrong group (Coleoptera: Scirtidae) based on morphology supported by mitochondrial and nuclear gene sequence data. Zootaxa 4831, 1–66.
New genera, species and combinations in the Pseudomicrocara Armstrong group (Coleoptera: Scirtidae) based on morphology supported by mitochondrial and nuclear gene sequence data.Crossref | GoogleScholarGoogle Scholar |

Watts, CHS, Bradford, TM, and Cooper, SJB (2021). A new genus, Perplexacara, and new generic placements of species of Australian marsh beetles (Coleoptera: Scirtidae) based on morphology and molecular genetic data. Zootaxa 4927, 539–548.
A new genus, Perplexacara, and new generic placements of species of Australian marsh beetles (Coleoptera: Scirtidae) based on morphology and molecular genetic data.Crossref | GoogleScholarGoogle Scholar |

Wiens, JJ (2006). Missing data and the design of phylogenetic analyses. Journal of Biomedical Informatics 39, 34–42.
Missing data and the design of phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 15922672PubMed |

Wiens, JJ, Fetzner, JW Jr, Parkinson, CL, and Reeder, TW (2005). Hylid frog phylogeny and sampling strategies for speciose clades. Systematic Biology 54, 778–807.
Hylid frog phylogeny and sampling strategies for speciose clades.Crossref | GoogleScholarGoogle Scholar | 16243760PubMed |

Wolsan, M, and Sato, JJ (2010). Effects of data incompleteness on the relative performance of parsimony and Bayesian approaches in a supermatrix phylogenetic reconstruction of Mustelidae and Procyonidae (Carnivora). Cladistics 26, 168–194.
Effects of data incompleteness on the relative performance of parsimony and Bayesian approaches in a supermatrix phylogenetic reconstruction of Mustelidae and Procyonidae (Carnivora).Crossref | GoogleScholarGoogle Scholar | 34875759PubMed |

Yang, Z (1996). Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution 11, 367–372.
Among-site rate variation and its impact on phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Yoshitomi, H (1997). A revision of the Japanese species of the genera Elodes and Sacodes (Coleoptera, Scirtidae). Elytra Tokyo 25, 349–417.

Yoshitomi, H (2005). Systematic revision of the family Scirtidae of Japan, with phylogeny, morphology and bionomics (Insecta: Coleoptera, Scirtoidea). Japanese Journal of Systematic Entomology: Monographic Series 3, 1–212.

Yoshitomi, H (2009). The Scirtes (Coleoptera: Scirtidae: Scirtinae) of Micronesia. Zootaxa 1974, 1–16.

Yoshitomi H, Klausnitzer B (2003) World check list of Hydrocyphon Redtenbacher, and revision of the Chinese species. In ‘Water Beetles of China’. (Eds MA Jäch, L Ji) Vol. 3, pp. 519–537. (Zoologisch-Botanische Gesellschaft and Wiener Coleopterologenverein: Wien, Austria)

Yu, G (2020). Using ggtree to visualize data on tree-like structures. Current Protocols in Bioinformatics 69, e96.
Using ggtree to visualize data on tree-like structures.Crossref | GoogleScholarGoogle Scholar | 32162851PubMed |

Zhang, S-Q, Che, L-H, Li, Y, Liang, D, Pang, H, Ślipiński, A, and Zhang, P (2018). Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nature Communications 9, 205.
Evolutionary history of Coleoptera revealed by extensive sampling of genes and species.Crossref | GoogleScholarGoogle Scholar | 29335414PubMed |

Zwick, P (2013a). Australian marsh beetles. 3. A restricted concept of genus Cyphon, Australian species of Cyphon s. str., and the new Australasian genus Nanocyphon (Coleoptera: Scirtidae). Genus 24, 163–189.

Zwick, P (2013b). Australian Marsh Beetles (Coleoptera: Scirtidae). 4. Two new genera Austrocyphon and Tasmanocyphon. Zootaxa 3706, 1–74.
Australian Marsh Beetles (Coleoptera: Scirtidae). 4. Two new genera Austrocyphon and Tasmanocyphon.Crossref | GoogleScholarGoogle Scholar | 26146679PubMed |

Zwick, P (2014). Australian Marsh Beetles (Coleoptera: Scirtidae). 6. Genera Calvarium Pic, Papuacyphon Zwick, and Ypsiloncyphon Klausnitzer. Zootaxa 3846, 1–41.
Australian Marsh Beetles (Coleoptera: Scirtidae). 6. Genera Calvarium Pic, Papuacyphon Zwick, and Ypsiloncyphon Klausnitzer.Crossref | GoogleScholarGoogle Scholar | 25112237PubMed |

Zwick, P (2015a). Australian marsh beetles (Coleoptera: Scirtidae). 7. Genus Nothocyphon, new genus. Zootaxa 3981, 301–359.
Australian marsh beetles (Coleoptera: Scirtidae). 7. Genus Nothocyphon, new genus.Crossref | GoogleScholarGoogle Scholar | 26249998PubMed |

Zwick, P (2015b). To the knowledge of Sarabandus robustus (LeConte) (Col.: Scirtidae: Scirtinae), and on the groundplan of male marsh beetle genitalia. Linzer Biologische Beitrage 47, 1439–1449.

Zwick, P (2016). Australian Marsh Beetles (Coleoptera: Scirtidae). 9. The relations of Australasian Ypsiloncyphon species to their Asian congeners, additions, mainly to Petrocyphon and Prionocyphon, and a key to Australian genera of Scirtinae. Zootaxa 4085, 151–198.
Australian Marsh Beetles (Coleoptera: Scirtidae). 9. The relations of Australasian Ypsiloncyphon species to their Asian congeners, additions, mainly to Petrocyphon and Prionocyphon, and a key to Australian genera of Scirtinae.Crossref | GoogleScholarGoogle Scholar | 27394297PubMed |