Revealing hidden diversity among upside-down jellyfishes (Cnidaria: Scyphozoa: Rhizostomeae: Cassiopea): distinct evidence allows the change of status of a neglected variety and the description of a new species
Edgar Gamero-Mora A * , Allen G. Collins B , Sheldon Rey Boco C , Serafin Mendez GesonA Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão Travessa 14, n.101, 05508-090, São Paulo, Brazil.
B National Systematics Laboratory of the National Oceanic and Atmospheric Administration Fisheries Service, National Museum of Natural History, Smithsonian Institution, WA 20013-7012, USA.
C School of Environment and Science and Australian Rivers Institute – Coasts and Estuaries, Gold Coast Campus, Griffith University, Qld 4215, Australia.
D Marine Biology Section, University of San Carlos, Cebu City, Philippines.
E Centro de Biologia Marinha, Universidade de São Paulo, Rodovia Dr Manoel Hipólito do Rego, Km 131.50, 11612-109, São Sebastião, SP, Brazil.
Invertebrate Systematics 36(1) 63-89 https://doi.org/10.1071/IS21002
Submitted: 19 January 2021 Accepted: 5 July 2021 Published: 31 January 2022
© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing.
Abstract
Morphological variability within Cassiopea is well documented and has led to inaccuracies in the establishment of species boundaries in this taxon. Cassiopea medusae specimens from the Western Pacific (Japan and the Philippines) were analysed using multiple lines of complementary evidence, including types of cnidae, macro-morphology and molecular data. These observations lead to the recognition of two distinct species: Cassiopea mayeri, sp. nov. and a previously synonymised variety now raised to species level (Cassiopea culionensis, stat. nov.). These species can be distinguished from each other using morphological features. Herein, sexually dimorphic traits are included for the first time in the descriptions of Cassiopea species. Nematocyst types not previously observed in the genus are also reported. Molecular analyses, based on individual and combined markers (16S + cytochrome c oxidase I, COI), also support two distinct species; they are not sister taxa, and both are nested together within a clade of other Cassiopea members from the Australian and Indo-Pacific regions. Species richness is underestimated in the Western Pacific region, and integrative approaches are helpful to reveal and describe species. The systematics of Cassiopea is far from completely understood, but the present study represents an important further step.
http://www.zoobank.org/References/B1A66787-009D-4465-954A-412C6878FCB4.
Keywords: Cassiopea, DNA barcoding, jellyfish, morphology, Pacific Ocean, phylogeny, species delimitation, taxonomy.
References
Abboud, SS, Gómez Daglio, L, and Dawson, MN (2018). A global estimate of genetic and geographic differentiation in macromedusae–implications for identifying the causes of jellyfish blooms. Marine Ecology Progress Series 591, 199–216.| A global estimate of genetic and geographic differentiation in macromedusae–implications for identifying the causes of jellyfish blooms.Crossref | GoogleScholarGoogle Scholar |
Adachi, K, Miyake, H, Kuramochi, T, Mizusawa, K, and Okumura, S (2017). Genome size distribution in phylum Cnidaria. Fisheries Science 83, 107–112.
| Genome size distribution in phylum Cnidaria.Crossref | GoogleScholarGoogle Scholar |
Agassiz, A, and Mayer, AG (1899). Acalephs from the Fiji Islands. Bulletin of the Museum of Comparative Zoölogy at Harvard College 32, 157–189.
Agassiz L1862 Contributions to the natural history of the United States of America. IV. Second monograph, In five parts, Acalephs in general, Ctenophorae, Discophorae, Hydroidae, homologies of the Radiata. Little, Brown & Co., Boston, viii, 380.
Ale, E, Ramšak, A, Stanković, D, Morandini, AC, Meyer, D, and Marques, AC (2019). Early Pleistocene divergence of Pelagia noctiluca populations (Cnidaria, Medusozoa) between the Atlantic Ocean and the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom 99, 1753–1764.
| Early Pleistocene divergence of Pelagia noctiluca populations (Cnidaria, Medusozoa) between the Atlantic Ocean and the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |
Aljbour, SM, Zimmer, M, Al-Horani, FA, and Kunzmann, A (2019). Metabolic and oxidative stress responses of the jellyfish Cassiopea sp. to changes in seawater temperature. Journal of Sea Research 145, 1–7.
| Metabolic and oxidative stress responses of the jellyfish Cassiopea sp. to changes in seawater temperature.Crossref | GoogleScholarGoogle Scholar |
Ames, CL, Klompen, AML, Badhiwala, K, Muffett, K, Reft, AJ, Kumar, M, Janssen, JD, Schultzhaus, JN, Field, LD, Muroski, ME, Bezio, N, Robinson, JT, Leary, DH, Cartwright, P, Collins, AG, and Vora, GJ (2020). Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana. Communications Biology 3, 67.
| Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana.Crossref | GoogleScholarGoogle Scholar | 32054971PubMed |
Arai, Y, Gotoh, RO, Yokoyama, J, Sato, C, Okuizumi, K, and Hanzawa, N (2017). Phylogenetic relationships and morphological variations of upside-down jellyfishes, Cassiopea spp. inhabiting Palau Islands. Biogeography 19, 133–141.
| Phylogenetic relationships and morphological variations of upside-down jellyfishes, Cassiopea spp. inhabiting Palau Islands.Crossref | GoogleScholarGoogle Scholar |
Astrin, JJ, Höfer, H, Spelda, J, Holstein, J, Bayer, S, Hendrich, L, Huber, BA, Kielhorn, K-H, Krammer, H-J, Lemke, M, Monje, JC, Morinière, J, Rulik, B, Petersen, M, Janssen, H, and Muster, C (2016). Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS One 11, e0162624.
| Towards a DNA barcode reference database for spiders and harvestmen of Germany.Crossref | GoogleScholarGoogle Scholar | 27681175PubMed |
Avian, M, Ramšak, A, Tirelli, V, D’Ambra, I, and Malej, A (2016). Redescription of Pelagia benovici into a new jellyfish genus, Mawia, gen. nov., and its phylogenetic position within Pelagiidae (Cnidaria: Scyphozoa: Semaeostomeae). Invertebrate Systematics 30, 523–546.
| Redescription of Pelagia benovici into a new jellyfish genus, Mawia, gen. nov., and its phylogenetic position within Pelagiidae (Cnidaria: Scyphozoa: Semaeostomeae).Crossref | GoogleScholarGoogle Scholar |
Bayha, KM, and Dawson, MN (2010). New family of allomorphic jellyfishes, Drymonematidae (Scyphozoa, Discomedusae), emphasizes evolution in the functional morphology and trophic ecology of gelatinous zooplankton. The Biological Bulletin 219, 249–267.
| New family of allomorphic jellyfishes, Drymonematidae (Scyphozoa, Discomedusae), emphasizes evolution in the functional morphology and trophic ecology of gelatinous zooplankton.Crossref | GoogleScholarGoogle Scholar | 21183445PubMed |
Bayha, KM, Collins, AG, and Gaffney, PM (2017). Multigene phylogeny of the scyphozoan jellyfish family Pelagiidae reveals that the common US Atlantic sea nettle comprises two distinct species (Chrysaora quinquecirrha and C. chesapeakei). PeerJ 5, e3863.
| Multigene phylogeny of the scyphozoan jellyfish family Pelagiidae reveals that the common US Atlantic sea nettle comprises two distinct species (Chrysaora quinquecirrha and C. chesapeakei).Crossref | GoogleScholarGoogle Scholar | 29043109PubMed |
Becking, LE, Renema, W, Santodomingo, NK, Hoeksema, BW, Tuti, Y, and de Voogd, NJ (2011). Recently discovered landlocked basins in Indonesia reveal high habitat diversity in anchialine systems. Hydrobiologia 677, 89–105.
| Recently discovered landlocked basins in Indonesia reveal high habitat diversity in anchialine systems.Crossref | GoogleScholarGoogle Scholar |
Bigelow, RP (1892). On a new species of Cassiopea from Jamaica. Zoologischer Anzeiger 15, 212–214.
Boco, SR, and Metillo, EB (2018). Observations on the specific associations found between scyphomedusae and commensal fish and invertebrates in the Philippines. Symbiosis 75, 69–79.
| Observations on the specific associations found between scyphomedusae and commensal fish and invertebrates in the Philippines.Crossref | GoogleScholarGoogle Scholar |
Brandt, JF (1838). Ausführliche Beschreibung der von C.H. Mertens auf seiner Weltumsegelung beobachtetenSchirmquallen, nebst allgemeinen Bemerkungen über die Schirmquallen überhaupt. Mémoires de l'AcadémieImpériale des Sciences de Saint‐Pétersbourg, 6 Série, Sciences Naturelles 2, 237–411.
Briggs, JC (2005). The marine East Indies: diversity and speciation. Journal of Biogeography 32, 1517–1522.
| The marine East Indies: diversity and speciation.Crossref | GoogleScholarGoogle Scholar |
Castresana, J (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
| Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 10742046PubMed |
Chiaverano, LM, Bayha, KM, and Graham, WM (2016). Local versus generalized phenotypes in two sympatric Aurelia species: understanding jellyfish ecology using genetics and morphometrics. PLoS One 11, e0156588.
| Local versus generalized phenotypes in two sympatric Aurelia species: understanding jellyfish ecology using genetics and morphometrics.Crossref | GoogleScholarGoogle Scholar | 27332545PubMed |
Collado-Vides, L, Segura-Puertas, L, and Merino-Ibarra, M (1988). Observaciones sobre dos escifomedusas del género Cassiopea en la laguna de Bojórquez Quintana Roo, México. Revista de Investigaciones Marinas 9, 21–27.
Collins AG, Jarms G, Morandini AC (2020) World list of Scyphozoa. Cassiopea Péron & Lesueur, 1810. In ‘World register of marine species’. (Flanders Marine Institute, VLIZ: Oostende, Belgium). Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=135253 [Verified 18 November 2020].
Cuvier, G (1800). Mémoire sur l‘organisation de quelques méduses. Bulletin des Sciences, Société Philomathique, Paris. Ser. I 2, 69.
Cunningham, CW, and Buss, LW (1993). Molecular evidence for multiple episodes of paedomorphosis in the family Hydractiniidae. Biochemical Systematics and Ecology 21, 57–69.
| Molecular evidence for multiple episodes of paedomorphosis in the family Hydractiniidae.Crossref | GoogleScholarGoogle Scholar |
D’Ambra, I, Graham, WM, Carmichael, RH, and Hernandez, FJ (2015). Fish rely on scyphozoan hosts as a primary food source: evidence from stable isotope analysis. Marine Biology 162, 247–252.
| Fish rely on scyphozoan hosts as a primary food source: evidence from stable isotope analysis.Crossref | GoogleScholarGoogle Scholar |
Dawson, MN (2003). Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa). Marine Biology 143, 369–379.
| Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa).Crossref | GoogleScholarGoogle Scholar |
Dawson, MN (2005a). Renaissance taxonomy: integrative evolutionary analyses in the classification of Scyphozoa. Journal of the Marine Biological Association of the United Kingdom 85, 733–739.
| Renaissance taxonomy: integrative evolutionary analyses in the classification of Scyphozoa.Crossref | GoogleScholarGoogle Scholar |
Dawson, MN (2005b). Morphological variation and systematics in the Scyphozoa: Mastigias (Rhizostomeae, Mastigiidae) – a golden unstandard? Hydrobiologia 537, 185–206.
| Morphological variation and systematics in the Scyphozoa: Mastigias (Rhizostomeae, Mastigiidae) – a golden unstandard?Crossref | GoogleScholarGoogle Scholar |
Dawson, MN (2005c). Incipient speciation of Catostylus mosaicus (Scyphozoa, Rhizostomeae, Catostylidae), comparative phylogeography and biogeography in south-east Australia. Journal of Biogeography 32, 515–533.
| Incipient speciation of Catostylus mosaicus (Scyphozoa, Rhizostomeae, Catostylidae), comparative phylogeography and biogeography in south-east Australia.Crossref | GoogleScholarGoogle Scholar |
Dayrat, B (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society. Linnean Society of London 85, 407–415.
| Towards integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |
de Souza, MR, and Dawson, MN (2018). Redescription of Mastigias papua (Scyphozoa, Rhizostomeae) with designation of a neotype and recognition of two additional species. Zootaxa 4457, 520–536.
| Redescription of Mastigias papua (Scyphozoa, Rhizostomeae) with designation of a neotype and recognition of two additional species.Crossref | GoogleScholarGoogle Scholar |
Fetzner, JW (1999). Extracting high-quality DNA from shed reptile skins: a simplified method. BioTechniques 26, 1052–1054.
| Extracting high-quality DNA from shed reptile skins: a simplified method.Crossref | GoogleScholarGoogle Scholar | 10376138PubMed |
Förderer, M, Rödder, D, and Langer, MR (2018). Patterns of species richness and the center of diversity in modern Indo-Pacific larger foraminifera. Scientific Reports 8, 8189.
| Patterns of species richness and the center of diversity in modern Indo-Pacific larger foraminifera.Crossref | GoogleScholarGoogle Scholar | 29844498PubMed |
Forskål, P (1775). Descriptiones animalium avium, amphibiorum, piscium, insectorum, vermium; quae in intinere orientali observavit Petrus Forskål. Hauniae , 1–164.
Galil, BS, Gershwin, LA, Douek, J, and Rinkevich, B (2010). Marivagia stellata gen. et sp. nov. (Scyphozoa: Rhizostomeae: Cepheidae), another alien jellyfish from the Mediterranean coast of Israel. Aquatic Invasions 5, 331–340.
| Marivagia stellata gen. et sp. nov. (Scyphozoa: Rhizostomeae: Cepheidae), another alien jellyfish from the Mediterranean coast of Israel.Crossref | GoogleScholarGoogle Scholar |
Galil, BS, Gershwin, LA, Zorea, M, Rahav, A, Rothman, SB, Fine, M, Lubinevsky, H, Douek, J, Paz, G, and Rinkevich, B (2017). Cotylorhiza erythraea Stiasny, 1920 (Scyphozoa: Rhizostomeae: Cepheidae), yet another erythraean jellyfish from the Mediterranean coast of Israel. Marine Biodiversity 47, 229–235.
| Cotylorhiza erythraea Stiasny, 1920 (Scyphozoa: Rhizostomeae: Cepheidae), yet another erythraean jellyfish from the Mediterranean coast of Israel.Crossref | GoogleScholarGoogle Scholar |
Gamero-Mora, E, Halbauer, R, Bartsch, V, Stampar, SN, and Morandini, AC (2019). Regenerative capacity of the upside-down jellyfish Cassiopea xamachana. Zoological Studies 58, 37.
| Regenerative capacity of the upside-down jellyfish Cassiopea xamachana.Crossref | GoogleScholarGoogle Scholar |
Gershwin, L-A, and Davie, P (2013). A remarkable new jellyfish (Cnidaria: Scyphozoa) from coastal Australia, representing a new suborder within the Rhizostomeae. Memoirs of the Queensland Museum 56, 625–630.
Gershwin, L-A, and Zeidler, W (2008a). Some new and previously unrecorded Scyphomedusae (Cnidaria : Scyphozoa) from southern Australian coastal waters. Zootaxa 1744, 1–18.
| Some new and previously unrecorded Scyphomedusae (Cnidaria : Scyphozoa) from southern Australian coastal waters.Crossref | GoogleScholarGoogle Scholar |
Gershwin, L-A, and Zeidler, W (2008b). Two new jellyfishes (Cnidaria: Scyphozoa) from tropical Australian waters. Zootaxa 1764, 41–52.
| Two new jellyfishes (Cnidaria: Scyphozoa) from tropical Australian waters.Crossref | GoogleScholarGoogle Scholar |
Gershwin, L, Zeidler, W, and Davie, PJF (2010). Medusae (Cnidaria) of Moreton Bay, Queensland, Australia. Memoirs of the Queensland Museum 54, 47–108.
Getino Mamet, LN, Gómez Daglio, L, and García-De León, FJ (2019). High genetic differentiation in the edible cannonball jellyfish (Cnidaria: Scyphozoa: Stomolophus spp.) from the Gulf of California, Mexico. Fisheries Research 219, 105328.
| High genetic differentiation in the edible cannonball jellyfish (Cnidaria: Scyphozoa: Stomolophus spp.) from the Gulf of California, Mexico.Crossref | GoogleScholarGoogle Scholar |
Glasby, CJ, Mandario, MAE, Burghardt, I, Kupriyanova, E, Gunton, LM, and Hutchings, PA (2019). A new species of the sanguinea-group Quatrefages, 1866 (Annelida: Eunicidae: Marphysa) from the Philippines. Zootaxa 4674, 264–282.
| A new species of the sanguinea-group Quatrefages, 1866 (Annelida: Eunicidae: Marphysa) from the Philippines.Crossref | GoogleScholarGoogle Scholar |
Goette, A (1886). Verzeichnis der Medusen, welche von Dr Sander, Stabsarzt auf S.M.S. “Prinz Adalbert” gesammeltwurden. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin 1886, 831–837.
Gohar, HAF, and Eisawy, AM (1960). The biology of Cassiopea andromeda (from the Red Sea) (with a note on the species problem). Publications of the Marine Biological Station Al-Ghardaga 11, 5–42.
Gómez Daglio, L, and Dawson, MN (2017). Species richness of jellyfishes (Scyphozoa: Discomedusae) in the Tropical Eastern Pacific: missed taxa, molecules, and morphology match in a biodiversity hotspot. Invertebrate Systematics 31, 635–663.
| Species richness of jellyfishes (Scyphozoa: Discomedusae) in the Tropical Eastern Pacific: missed taxa, molecules, and morphology match in a biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |
Gülşahin, N (2016). Preliminary study on nematocyst types and venom isolation of Cassiopea andromeda Forskål, 1775 (Scyphozoa, Cnidaria) from Turkey. Central Nervous System Agents in Medicinal Chemistry 16, 208–212.
| Preliminary study on nematocyst types and venom isolation of Cassiopea andromeda Forskål, 1775 (Scyphozoa, Cnidaria) from Turkey.Crossref | GoogleScholarGoogle Scholar | 26511919PubMed |
Haeckel, E (1880). Das system der Medusen. Erster Theil einer Monographie der medusen. Zweite Hälfte des ersten Theils: system der Acraspeden. Denkschriften der Medicinisch-Naturwissenschaftlichen Gesellschaft zu Jena 1, 361–672.
Heins, A, Glatzel, T, and Holst, S (2015). Revised descriptions of the nematocysts and the asexual reproduction modes of the scyphozoan jellyfish Cassiopea andromeda (Forskål, 1775). Zoomorphology 134, 351–366.
| Revised descriptions of the nematocysts and the asexual reproduction modes of the scyphozoan jellyfish Cassiopea andromeda (Forskål, 1775).Crossref | GoogleScholarGoogle Scholar |
Holland, BS, Dawson, MN, Crow, GL, and Hofmann, DK (2004). Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Marine Biology 145, 1119–1128.
| Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands.Crossref | GoogleScholarGoogle Scholar |
Holst, S, and Laakmann, S (2014). Morphological and molecular discrimination of two closely related jellyfish species, Cyanea capillata and C. lamarckii (Cnidaria, Scyphozoa), from the northeast Atlantic. Journal of Plankton Research 36, 48–63.
| Morphological and molecular discrimination of two closely related jellyfish species, Cyanea capillata and C. lamarckii (Cnidaria, Scyphozoa), from the northeast Atlantic.Crossref | GoogleScholarGoogle Scholar |
Hummelinck, PW (1933). Zur kenntnis der Scyphomedusen-Gattung Cassiopea, mit besonderer Berücksichtigung westindischer Formen. Zoologischer Jahrbucher 64, 453–502.
Hummelinck, PW (1968). Caribbean scyphomedusae of the genus Cassiopea. Studies of Fauna of Curaçao and other Caribbean Islands 97, 1–55.
Jarms G, Morandini AC (2019) ‘World Atlas of Jellyfish.’ (Eds G Jarms, AC Morandini) (Dölling und Galitz: Hamburg, Germany)
Jensch F, Hofmann DK (1997) The cnidomes of Cassiopea andromeda Forskål, 1775, and Cassiopea xamachana Bigelow, 1882 (Cnidaria: Scyphozoa). In ‘Proceedings of the 6th International Conference on Coelenterate Biology', 16–21 July 1995, Noordwijkerhout, Netherlands. pp. 279–285. (Nationaal Natuurhistorisch Museum: Leiden, Netherlands)
Johnson, KG, Hasibuan, F, Muller, W, and Todd, JA (2015). Biotic and environmental origins of the Southeast Asian marine biodiversity hotspot: the throughflow project. Palaios 30, 1–6.
| Biotic and environmental origins of the Southeast Asian marine biodiversity hotspot: the throughflow project.Crossref | GoogleScholarGoogle Scholar |
Jörger, KM, and Schrödl, M (2013). How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology 10, 59.
| How to describe a cryptic species? Practical challenges of molecular taxonomy.Crossref | GoogleScholarGoogle Scholar | 24073641PubMed |
Kalyaanamoorthy, S, Minh, BQ, Wong, TKF, von Haeseler, A, and Jermiin, LS (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
| ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar | 28481363PubMed |
Katoh, K, and Standley, DM (2013). MAFFT: multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
| MAFFT: multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |
Kayal, E, Roure, BA, Philippe, H, Collins, AG, and Lavrov, DV (2013). Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evolutionary Biology 13, 5.
| Cnidarian phylogenetic relationships as revealed by mitogenomics.Crossref | GoogleScholarGoogle Scholar | 23302374PubMed |
Kayal, E, Bentlage, B, Pankey, MS, Ohdera, AK, Medina, M, Plachetzki, DC, Collins, AG, and Ryan, JF (2018). Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evolutionary Biology 18, 68.
| Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits.Crossref | GoogleScholarGoogle Scholar |
Keable, SJ, and Ahyong, ST (2016). First records of the invasive upside-down jellyfish, Cassiopea (Cnidaria: Scyphozoa: Rhizostomeae: Cassiopeidae), from coastal lakes of New South Wales, Australia. Records of the Australian Museum 68, 23–30.
| First records of the invasive upside-down jellyfish, Cassiopea (Cnidaria: Scyphozoa: Rhizostomeae: Cassiopeidae), from coastal lakes of New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |
Keller, C (1883). Untersuchungen über neue Medusen aus dem Rothen Meere. Zeitschrift für wissenschaftliche Zoologier Wissenschaftliche Zoologie 38, 621–670.
Klein, SG, Pitt, KA, Nitschke, MR, Goyen, S, Welsh, DT, Suggett, DJ, and Carroll, AR (2017). Symbiodinium mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidarian. Global Change Biology 23, 3690–3703.
| Symbiodinium mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidarian.Crossref | GoogleScholarGoogle Scholar | 28390081PubMed |
Kolbasova, GD, Zalevsky, AO, Gafurov, AR, Gusev, PO, Ezhova, MA, Zheludkevich, AA, Konovalova, OP, Kosobokova, KN, Kotlov, NU, Lanina, NO, Lapashina, AS, Medvedev, DO, Nosikova, KS, Nuzhdina, EO, Bazykin, GA, and Neretina, TV (2015). A new species of Cyanea jellyfish sympatric to C. capillata in the White Sea. Polar Biology 38, 1439–1451.
| A new species of Cyanea jellyfish sympatric to C. capillata in the White Sea.Crossref | GoogleScholarGoogle Scholar |
Kramp, PL (1961). Synopsis of the medusae of the world. Journal of the Marine Biological Association of the United Kingdom 40, 7–469.
| Synopsis of the medusae of the world.Crossref | GoogleScholarGoogle Scholar |
Kramp, PL (1968). The scyphomedusae collected by the Galathea expedition 1950–52. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kjøbenhavn 131, 67–98.
Kramp, PL (1970). Zoogeographical studies on Rhizostomeae (Scyphozoa). Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kjøbenhavn 133, 7–30.
Larson, RJ (1982). Medusae (Cnidaria) from Carrie Bow Cay, Belize. Smithsonian Contributions to the Marine Sciences 12, 253–258.
Larson, RJ (1997). Feeding behaviour of Caribbean scyphomedusae: Cassiopea frondosa (Pallas) and Cassiopea xamachana Bigelow. Studies on the Natural History of the Caribbean Region 73, 43–54.
| Feeding behaviour of Caribbean scyphomedusae: Cassiopea frondosa (Pallas) and Cassiopea xamachana Bigelow.Crossref | GoogleScholarGoogle Scholar |
Lawley, JW, Gamero-Mora, E, Maronna, MM, Chiaverano, LM, Stampar, SN, Hopcroft, RR, Collins, AG, and Morandini, AC (2021). The importance of molecular characters when morphological variability hinders diagnosability: systematics of the moon jellyfish genus Aurelia (Cnidaria: Scyphozoa). PeerJ 9, e11954.
| The importance of molecular characters when morphological variability hinders diagnosability: systematics of the moon jellyfish genus Aurelia (Cnidaria: Scyphozoa).Crossref | GoogleScholarGoogle Scholar | 34589293PubMed |
Leigh, JW, and Bryant, D (2015). POPART: full‐feature software for haplotype network construction. Methods in Ecology and Evolution 6, 1110–1116.
| POPART: full‐feature software for haplotype network construction.Crossref | GoogleScholarGoogle Scholar |
Lesson RP (1830) ‘Voyage autour du monde, exécuté par ordre du Roi, sur la Corvette de la Majesté, La Coquile, pendant les années 1822, 1823, 1824 et 1825.’ (Arthus Bertrand: Paris, France)
Li, D, Olden, JD, Lockwood, JL, Record, S, McKinney, ML, and Baiser, B (2020). Changes in taxonomic and phylogenetic diversity in the Anthropocene. Proceedings of the Royal Society of London – B. Biological Sciences 287, 20200777.
| Changes in taxonomic and phylogenetic diversity in the Anthropocene.Crossref | GoogleScholarGoogle Scholar |
Light, SF (1914). Some Philippine Scyphomedusae, including two new genera, five new species and one new variety. Philippine Journal of Science 9, 195–231.
Light, SF (1921). Further notes on Philippine scyphomedusan jellyfishes. Philippine Journal of Science 18, 25–45.
Lim, GS, Balke, M, and Meier, R (2012). Determining species boundaries in a world full of rarity: singletons, species delimitation methods. Systematic Biology 61, 165–169.
| Determining species boundaries in a world full of rarity: singletons, species delimitation methods.Crossref | GoogleScholarGoogle Scholar | 21482553PubMed |
Lindley J (1832) ‘An introduction to Botany.’ (Longman, Rees, Orme, Brown, Green, & Longman: London, UK)
Maas, O (1903). Die scyphomedusen der siboga expedition. Siboga Expedition Monographs 11, 1–91.
Maggio, T, Allegra, A, Bosch-Belmar, M, Cillari, T, Cuttitta, A, Falautano, M, Milisenda, G, Nicosia, A, Perzia, P, Sinopoli, M, and Castriota, L (2019). Molecular identity of the non-indigenous Cassiopea sp. from Palermo Harbour (central Mediterranean Sea). Journal of the Marine Biological Association of the United Kingdom 99, 1765–1773.
| Molecular identity of the non-indigenous Cassiopea sp. from Palermo Harbour (central Mediterranean Sea).Crossref | GoogleScholarGoogle Scholar |
Mastrototaro, F, Montesanto, F, Salonna, M, Viard, F, Chimienti, G, Trainito, E, and Gissi, C (2020). An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species, Ciona intermedia. Zoological Journal of the Linnean Society 190, zlaa042.
| An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species, Ciona intermedia.Crossref | GoogleScholarGoogle Scholar |
Matsumoto, GI, Raskoff, KA, and Lindsay, DJ (2003). Tiburonia granrojo n. sp., a mesopelagic scyphomedusa from the Pacific Ocean representing the type of a new subfamily (class Scyphozoa: order Semaeostomeae: family Ulmaridae: subfamily Tiburoniinae subfam. nov.). Marine Biology 143, 73–77.
| Tiburonia granrojo n. sp., a mesopelagic scyphomedusa from the Pacific Ocean representing the type of a new subfamily (class Scyphozoa: order Semaeostomeae: family Ulmaridae: subfamily Tiburoniinae subfam. nov.).Crossref | GoogleScholarGoogle Scholar |
Mayer AG (1910) ‘Medusae of the World volume III. The scyphomedusae.’ (Carnegie Institution of Washington: Washington, DC, USA)
Mayer, AG (1915). Medusae of the Philippines and of Torres Straits. Being a report on the Scyphomedusae collected by the US Fisheries Bureau steamer ‘Albatross’ in the Philippine Islands and Malay Archipelago, 1907–1910, and upon the medusae collected by the expedition of the Carnegie Institution of Washington to Torres Straits, Australia, in 1913. Papers from the Tortugas Laboratory 8, 157–202.
Mayer, AG (1917). Report upon the Scyphomedusae collected by the US Bureau of Fisheries steamer ‘Albatross’ in the Philippine Islands and Malay Archipelago. Bulletin – United States National Museum 100, 171–233.
Medina M, Sharp V, Ohdera A, Bellantuono A, Dalrymple J, Gamero-Mora E, Steinworth B, Hofmann DK, Martindale MQ, Morandini AC, DeGennaro M, Fitt WK (2021) The upside-down jellyfish Cassiopea xamachana as an emerging model system to study cnidarian–algal symbiosis. In ‘Handbook of marine model organisms in experimental biology: established and emerging’. (Eds A Boutet, B Schierwater.) pp. 149–171. (CRC Press: Boca Raton, FL, USA)
Mellas, RE, McIlroy, SE, Fitt, WK, and Coffroth, MA (2014). Variation in symbiont uptake in the early ontogeny of the upside-down jellyfish, Cassiopea spp. Journal of Experimental Marine Biology and Ecology 459, 38–44.
| Variation in symbiont uptake in the early ontogeny of the upside-down jellyfish, Cassiopea spp.Crossref | GoogleScholarGoogle Scholar |
Miller, BJ, Von der Heyden, S, and Gibbons, MJ (2012). Significant population genetic structuring of the holoplanktic scyphozoan Pelagia noctiluca in the Atlantic Ocean. African Journal of Marine Science 34, 425–430.
| Significant population genetic structuring of the holoplanktic scyphozoan Pelagia noctiluca in the Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |
Moestafa, SH, and McConnaughey, BH (1966). Catostylus ouwensi (Rhizostomeae, Catostylidae), a new jellyfish from Irian (New Guinea) and Ouwensia catostyli n. gen., n. sp., parasitic in C. ouwensi. Treubia 27, 1–9.
Morandini, AC, and Marques, AC (2010). Revision of the genus Chrysaora Péron & Lesueur, 1810 (Cnidaria: Scyphozoa). Zootaxa 2464, 1–97.
| Revision of the genus Chrysaora Péron & Lesueur, 1810 (Cnidaria: Scyphozoa).Crossref | GoogleScholarGoogle Scholar |
Morandini, AC, Stampar, SN, Maronna, MM, and Da Silveira, FL (2017). All non-indigenous species were introduced recently? The case study of Cassiopea (Cnidaria: Scyphozoa) in Brazilian waters. Journal of the Marine Biological Association of the United Kingdom 97, 321–328.
| All non-indigenous species were introduced recently? The case study of Cassiopea (Cnidaria: Scyphozoa) in Brazilian waters.Crossref | GoogleScholarGoogle Scholar |
Mutlu, E, Çağatay, IT, Olguner, MT, and Yilmaz, HE (2020). A new sea-nettle from the Eastern Mediterranean Sea: Chrysaora pseudoocellata sp. nov. (Scyphozoa: Pelagiidae). Zootaxa 4790, 229–244.
| A new sea-nettle from the Eastern Mediterranean Sea: Chrysaora pseudoocellata sp. nov. (Scyphozoa: Pelagiidae).Crossref | GoogleScholarGoogle Scholar |
Nath, RD, Bedbrook, CN, Abrams, MJ, Basinger, T, Bois, JS, Prober, DA, Sternberg, PW, Gradinaru, V, and Goentoro, L (2017). The jellyfish Cassiopea exhibits a sleep-like state. Current Biology 27, 2984–2990.e3.
| The jellyfish Cassiopea exhibits a sleep-like state.Crossref | GoogleScholarGoogle Scholar | 28943083PubMed |
Nguyen, L-T, Schmidt, HA, von Haeseler, A, and Minh, BQ (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
| IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar | 25371430PubMed |
Nishikawa, J, Ohtsuka, S, Mulyadi, , Mujiono, N, Lindsay, DJ, Miyamoto, H, and Nishida, S (2015). A new species of the commercially harvested jellyfish Crambionella (Scyphozoa) from central Java, Indonesia with remarks on the fisheries. Journal of the Marine Biological Association of the United Kingdom 95, 471–481.
| A new species of the commercially harvested jellyfish Crambionella (Scyphozoa) from central Java, Indonesia with remarks on the fisheries.Crossref | GoogleScholarGoogle Scholar |
Ohdera, AH, Abrams, MJ, Ames, CL, Baker, DM, Suescún-Bolívar, LP, Collins, AG, Freeman, CJ, Gamero-Mora, E, Goulet, TL, Hofmann, DK, Jaimes-Becerra, A, Long, PF, Marques, AC, Miller, LA, Mydlarz, LD, Morandini, AC, Newkirk, CR, Putri, SP, Samson, JE, Stampar, SN, Steinworth, B, Templeman, M, Thomé, PE, Vlok, M, Woodley, CM, Wong, JCY, Martindale, MQ, Fitt, WK, and Medina, M (2018). Upside-down but headed in the right direction: review of the highly versatile Cassiopea xamachana system. Frontiers in Ecology and Evolution 6, 35.
| Upside-down but headed in the right direction: review of the highly versatile Cassiopea xamachana system.Crossref | GoogleScholarGoogle Scholar |
Ojimi, MC, and Hidaka, M (2010). Comparison of telomere length among different life cycle stages of the jellyfish Cassiopea andromeda. Marine Biology 157, 2279–2287.
| Comparison of telomere length among different life cycle stages of the jellyfish Cassiopea andromeda.Crossref | GoogleScholarGoogle Scholar |
Östman, C (2000). A guideline to nematocyst nomenclature and classification, and some notes on the systematic value of nematocysts. Scientia Marina 64, 31–46.
| A guideline to nematocyst nomenclature and classification, and some notes on the systematic value of nematocysts.Crossref | GoogleScholarGoogle Scholar |
Östman, C, and Hydman, J (1997). Nematocyst analysis of Cyanea capillata and Cyanea lamarckii (Scyphozoa, Cnidaria). Scientia Marina 61, 313–344.
Pagès, F, Gili, J, and Bouillon, J (1992). Medusae (Hydrozoa, Scyphozoa, Cubozoa) of the Benguela Current (southeastern Atlantic). Scientia Marina 56, 1–64.
Pallas, PS (1774). Spicilegia Zoologica quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur. Fasciculus 10. Berolini, Prostant, Apud Gottl. , 1–41.
Péron, F, and Lesueur, CA (1810). Tableau des caractères génériques et spécifiques de toutes les espècesde Méduses connues jusqu’à ce jour. 14, 325–366.
Pinheiro, HT, Shepherd, B, Castillo, C, Abesamis, RA, Copus, JM, Pyle, RL, Greene, BD, Coleman, RR, Whitton, RK, Thillainath, E, Bucol, AA, Birt, M, Catania, D, Bell, MV, and Rocha, LA (2019). Deep reef fishes in the world’s epicenter of marine biodiversity. Coral Reefs 38, 985–995.
| Deep reef fishes in the world’s epicenter of marine biodiversity.Crossref | GoogleScholarGoogle Scholar |
Piraino, S, Aglieri, G, Martell, L, Mazzoldi, C, Melli, V, Milisenda, G, Scorrano, S, and Boero, F (2014). Pelagia benovici sp. nov. (Cnidaria, Scyphozoa): a new jellyfish in the Mediterranean Sea. Zootaxa 3794, 455–468.
| Pelagia benovici sp. nov. (Cnidaria, Scyphozoa): a new jellyfish in the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 24870334PubMed |
Prieto, L, Armani, A, and Macías, D (2013). Recent strandings of the giant jellyfish Rhizostoma luteum Quoy and Gaimard, 1827 (Cnidaria: Scyphozoa: Rhizostomeae) on the Atlantic and Mediterranean coasts. Marine Biology 160, 3241–3247.
| Recent strandings of the giant jellyfish Rhizostoma luteum Quoy and Gaimard, 1827 (Cnidaria: Scyphozoa: Rhizostomeae) on the Atlantic and Mediterranean coasts.Crossref | GoogleScholarGoogle Scholar |
Rädecker, N, Pogoreutz, C, Wild, C, and Voolstra, CR (2017). Stimulated respiration and net photosynthesis in Cassiopeia sp. during glucose enrichment suggests in hospite CO2 limitation of algal endosymbionts. Frontiers in Marine Science 4, 267.
| Stimulated respiration and net photosynthesis in Cassiopeia sp. during glucose enrichment suggests in hospite CO2 limitation of algal endosymbionts.Crossref | GoogleScholarGoogle Scholar |
Ramšak, A, Stopar, K, and Malej, A (2012). Comparative phylogeography of meroplanktonic species, Aurelia spp. and Rhizostoma pulmo (Cnidaria: Scyphozoa) in European Seas. Hydrobiologia 690, 69–80.
| Comparative phylogeography of meroplanktonic species, Aurelia spp. and Rhizostoma pulmo (Cnidaria: Scyphozoa) in European Seas.Crossref | GoogleScholarGoogle Scholar |
Ras, V, Neethling, S, Engelbrecht, A, Morandini, AC, Bayha, KM, Skrypzeck, H, and Gibbons, MJ (2020). There are three species of Chrysaora (Scyphozoa: Discomedusae) in the Benguela upwelling ecosystem, not two. Zootaxa 4778, 401–438.
| There are three species of Chrysaora (Scyphozoa: Discomedusae) in the Benguela upwelling ecosystem, not two.Crossref | GoogleScholarGoogle Scholar |
Raskoff, KA, and Matsumoto, GI (2004). Stellamedusa ventana, a new mesopelagic scyphomedusa from the eastern Pacific representing a new subfamily, the Stellamedusinae. Journal of the Marine Biological Association of the United Kingdom 84, 37–42.
| Stellamedusa ventana, a new mesopelagic scyphomedusa from the eastern Pacific representing a new subfamily, the Stellamedusinae.Crossref | GoogleScholarGoogle Scholar |
Rizman-Idid, M, Farrah-Azwa, AB, and Chong, VC (2016). Preliminary taxonomic survey and molecular documentation of jellyfish species (Cnidaria: Scyphozoa and Cubozoa) in Malaysia. Zoological Studies 55, 35.
| Preliminary taxonomic survey and molecular documentation of jellyfish species (Cnidaria: Scyphozoa and Cubozoa) in Malaysia.Crossref | GoogleScholarGoogle Scholar |
Sanciangco, JC, Carpenter, KE, Etnoyer, PJ, and Moretzsohn, F (2013). Habitat availability and heterogeneity and the Indo-Pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific. PLoS One 8, e56245.
| Habitat availability and heterogeneity and the Indo-Pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific.Crossref | GoogleScholarGoogle Scholar | 23457533PubMed |
Schultze, LS (1898). Rhizostomen von Ambon. Denkschriften der Medizinisch-Naturwissenschaftlichen Gesellschaft zu Jena 8, 443–466.
Scorrano, S, Aglieri, G, Boero, F, Dawson, MN, and Piraino, S (2016). Unmasking Aurelia species in the Mediterranean Sea: an integrative morphometric and molecular approach. Zoological Journal of the Linnean Society 180, 243–267.
| Unmasking Aurelia species in the Mediterranean Sea: an integrative morphometric and molecular approach.Crossref | GoogleScholarGoogle Scholar |
Siokou, I, Ates, AS, Ayas, D, Souissi, JB, Chatterjee, T, Dimiza, M, Durgham, H, Dogrammatzi, K, Erguden, D, Gerakaris, V, Grego, M, Issaris, Y, Kadis, K, Katagan, T, Kapiris, K, Katsanevakis, S, Kerckhof, F, Papastergiadou, E, Pesic, V, Polychronidis, L, Rifi, M, Salomidi, M, Sezgin, M, Triantaphyllou, M, Tsiamis, K, Turan, C, Tziortzis, I, D’udekem D’acoz, C, Yaglioglu, D, Zaouali, J, and Zenetos, A (2013). New Mediterranean marine biodiversity records. Mediterranean Marine Science 14, 238–249.
| New Mediterranean marine biodiversity records.Crossref | GoogleScholarGoogle Scholar |
Stampar, SN, Gamero-Mora, E, Maronna, MM, Fritscher, JM, Oliveira, BSP, Sampaio, CLS, and Morandini, AC (2020). The puzzling occurrence of the upside-down jellyfish Cassiopea spp. (Cnidaria, Scyphozoa) in Brazilian Coast: several invasion events? Zoologia 37, e50834.
| The puzzling occurrence of the upside-down jellyfish Cassiopea spp. (Cnidaria, Scyphozoa) in Brazilian Coast: several invasion events?Crossref | GoogleScholarGoogle Scholar |
Stiasny, G (1920). Die Scyphomedusen‐Sammlung des Naturhistorischen Reichsmuseums in Leiden. III. Rhizostomeae. Zoologische Mededeelingen 5, 213–230.
Stiasny, G (1921). Studien über Rhizostomeen mit besonderer berücksichtigung der Fauna des Malaiischen Archipels nebsteiner revision des systems. Capita Zoologica 1, 1–179.
Stiasny, G (1926). Über einige Scyphomedusen von Puerto Galera. Mindoro (Philippinen). Zoölogische Mededeelingen 9, 239–248.
Stiasny, G (1931). Die Rhizostomeen-Sammlung des British Museum (Natural History) in London. Zoölogische Mededeelingen 14, 137–178.
Stopar, K, Ramšak, A, Trontelj, P, and Malej, A (2010). Lack of genetic structure in the jellyfish Pelagia noctiluca (Cnidaria: Scyphozoa: Semaeostomeae) across European seas. Molecular Phylogenetics and Evolution 57, 417–428.
| Lack of genetic structure in the jellyfish Pelagia noctiluca (Cnidaria: Scyphozoa: Semaeostomeae) across European seas.Crossref | GoogleScholarGoogle Scholar | 20637295PubMed |
Struck, TH, Feder, JL, Bendiksby, M, Birkeland, S, Cerca, J, Gusarov, VI, Kistenich, S, Larsson, K-H, Liow, LH, Nowak, MD, Stedje, B, Bachmann, L, and Dimitrov, D (2018). Finding evolutionary processes hidden in cryptic species. Trends in Ecology & Evolution 33, 153–163.
| Finding evolutionary processes hidden in cryptic species.Crossref | GoogleScholarGoogle Scholar |
Sun, T, Dong, Z, and Li, Y (2019). Versuriga anadyomene, a newly recorded scyphozoan jellyfish (Scyphozoa: Rhizostomae) in Chinese waters. Journal of Oceanology and Limnology 37, 266–272.
| Versuriga anadyomene, a newly recorded scyphozoan jellyfish (Scyphozoa: Rhizostomae) in Chinese waters.Crossref | GoogleScholarGoogle Scholar |
Swift, HF, Gómez Daglio, L, and Dawson, MN (2016). Three routes to crypsis: stasis, convergence, and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae). Molecular Phylogenetics and Evolution 99, 103–115.
| Three routes to crypsis: stasis, convergence, and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae).Crossref | GoogleScholarGoogle Scholar | 26965984PubMed |
Talavera, G, and Castresana, J (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
| Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar | 17654362PubMed |
Tilesius, WG (1831). Beiträge zur Naturgeschichte der Medusen. I. Cassiopeae Nova Acta Physico‐Medica Academiae Caesareae Leopoldino‐Carolinae Naturae Curiosorum 15, 247–288.
Trevisan, B, Primon, JF, and Marques, FPL (2017). Systematics and diversification of Anindobothrium Marques, Brooks & Lasso, 2001 (Eucestoda: Rhinebothriidea). PLoS One 12, e0184632.
| Systematics and diversification of Anindobothrium Marques, Brooks & Lasso, 2001 (Eucestoda: Rhinebothriidea).Crossref | GoogleScholarGoogle Scholar | 28953933PubMed |
Wilson EO (1992) ‘The diversity of life.’ (Harvard University Press: Cambridge, MA, USA)
Zenetos, A, Katsanevakis, S, Poursanidis, D, Crocetta, F, Damalas, D, Apostolopoulos, G, Gravili, C, Vardala-Theodorou, E, and Malaquias, M (2011). Marine alien species in Greek seas: additions and amendments by 2010. Mediterranean Marine Science 12, 95–120.
| Marine alien species in Greek seas: additions and amendments by 2010.Crossref | GoogleScholarGoogle Scholar |