Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Genetic analyses reveal cryptic diversity in the widely distributed Styela canopus (Ascidiacea : Styelidae)

Rodolfo Corrêa de Barros https://orcid.org/0000-0003-0801-9649 A C and Rosana Moreira da Rocha https://orcid.org/0000-0001-6712-7960 B
+ Author Affiliations
- Author Affiliations

A Graduate Program in Zoology, Universidade Federal do Paraná, C.P. 19020, 81.531-980, Curitiba, Paraná, Brazil.

B Zoology Departament, Universidade Federal do Paraná, C.P. 19020, 81.531-980, Curitiba, Paraná, Brazil. Email: rmrocha@ufpr.br

C Corresponding author. Email: rodolfo@ufpr.br

Invertebrate Systematics 35(3) 298-311 https://doi.org/10.1071/IS20058
Submitted: 27 July 2020  Accepted: 23 November 2020   Published: 24 March 2021

Abstract

The routine use of DNA sequencing techniques and phylogenetic analysis has resulted in the discovery of many cryptic species, especially in the oceans. The common, globally introduced species Styela canopus is suspected to be a complex of cryptic species because of its widespread distribution and variable external morphology. We tested this possibility using COI and ANT marker sequences to uncover the phylogenetic relationship among 19 populations, and to examine genetic variability as well as gene flow. We obtained 271 COI and 67 ANT sequences and found surprising diversity among the 19 populations (COI: π = 0.18, hd = 0.99; ANT: π = 0.13, hd = 0.95). Corresponding topologies were found using Bayesian inference and maximum likelihood for both simple locus (COI) and multilocus (COI + ANT) analyses and so the clades received strong support. We used simple (ABGD, bPTP, GMYC) and multiple (BSD) locus methods to delimit species. The simple locus methods indicated that the current Styela canopus comprises at least 15 species. The BSD method for concatenated data supported 7 of the 15 species. We suggest that S. canopus should be treated as the Styela canopus complex. The large number of cryptic species found, often with more than one clade found in sympatry, creates opportunities for better understanding reproductive isolation, hybridisation or speciation. As several lineages have already been introduced widely around the world, we must quickly understand their diversity and invasive abilities.

Keywords: ADT/ATP translocase, bioinvasion, Cox 1, cryptic speciation, species delimitation, Tunicata.


References

Agapow, P. M., Bininda-Emonds, O. R. P., Crandall, K. A., Gittleman, J. L., Mace, G. M., Marshall, J. C., and Purvis, A. (2004). The impact of species concept on biodiversity studies. The Quarterly Review of Biology 79, 161–179.
The impact of species concept on biodiversity studies.Crossref | GoogleScholarGoogle Scholar | 15232950PubMed |

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Amor, M. D., Norman, M. D., Roura, A., Leite, T. S., Gleadall, I. G., Reid, A., Perales-Raya, C., Lu, C.-C., Silvey, C. J., Vidal, E. A. G., Hochberg, F. G., Zheng, X., and Strugnell, J. M. (2017). Morphological assessment of the Octopus vulgaris species complex evaluated in light of molecular-based phylogenetic inferences. Zoologica Scripta 46, 275–288.
Morphological assessment of the Octopus vulgaris species complex evaluated in light of molecular-based phylogenetic inferences.Crossref | GoogleScholarGoogle Scholar |

Barraclough, T. G., and Nee, S. (2001). Phylogenetics and speciation. Trends in Ecology & Evolution 16, 391–399.
Phylogenetics and speciation.Crossref | GoogleScholarGoogle Scholar |

Beheregaray, L. B., and Caccone, A. (2007). Cryptic biodiversity in a changing world. Journal of Biology 6, 9.
Cryptic biodiversity in a changing world.Crossref | GoogleScholarGoogle Scholar | 18177504PubMed |

Bensasson, D., Zhang, D. X., Hartl, D. L., and Hewitt, G. M. (2001). Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends in Ecology & Evolution 16, 314–321.
Mitochondrial pseudogenes: evolution’s misplaced witnesses.Crossref | GoogleScholarGoogle Scholar |

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Wheeler, D. L. (2005). GenBank. Nucleic Acids Research 33, D34–D38.
GenBank.Crossref | GoogleScholarGoogle Scholar | 15608212PubMed |

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
Cryptic species as a window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |

Blagoev, A. G., Dewaard, J. R., Ratnasingham, S., Dewaard, S. L., Lu, L. I., Robertson, J., Telfer, A. C., and Hebert, P. D. N. (2016). Untangling taxonomy: a DNA barcode reference library for Canadian spiders. Molecular Ecology Resources 16, 325–341.
Untangling taxonomy: a DNA barcode reference library for Canadian spiders.Crossref | GoogleScholarGoogle Scholar |

Bock, D. G., MacIsaac, H. J., and Cristescu, M. E. (2012). Multilocus genetic analyses differentiate between widespread and spatially restricted cryptic species in a model ascidian. Proceedings. Biological Sciences 279, 2377–2385.
Multilocus genetic analyses differentiate between widespread and spatially restricted cryptic species in a model ascidian.Crossref | GoogleScholarGoogle Scholar | 22319123PubMed |

Boeger, W. A., Pie, M. R., Falleiros, R. M., Ostrensky, A., Darrigran, G., Mansur, M. C. D., and Belz, C. E. (2007). Testing a molecular protocol to monitor the presence of golden mussel larvae (Limnoperna fortunei) in plankton samples. Journal of Plankton Research 29, 1015–1019.
Testing a molecular protocol to monitor the presence of golden mussel larvae (Limnoperna fortunei) in plankton samples.Crossref | GoogleScholarGoogle Scholar |

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., Suchard, M. C., Rambaut, A., and Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
BEAST 2: a software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar | 24722319PubMed |

Brown, W. M., George, M., and Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America 76, 1967–1971.
Rapid evolution of animal mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 109836PubMed |

Brunetti, R., Gissi, C., Pennati, R., Caicci, F., Gasparini, F., and Manni, L. (2015). Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. Journal of Zoological Systematics and Evolutionary Research 53, 186–193.
Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis.Crossref | GoogleScholarGoogle Scholar |

Brunetti, R., Griggio, F., Mastrototaro, F., Gasparini, F., and Gissi, C. (2020). Toward a resolution of the cosmopolitan Botryllus schlosseri species complex (Ascidiacea, Styelidae): mitogenomics and morphology of clade E (Botryllus gaiae). Zoological Journal of the Linnean Society 20, zlaa023.
Toward a resolution of the cosmopolitan Botryllus schlosseri species complex (Ascidiacea, Styelidae): mitogenomics and morphology of clade E (Botryllus gaiae).Crossref | GoogleScholarGoogle Scholar |

Caputi, L., Andreakis, N., Mastrototaro, F., Cirino, P., Vassillo, M., and Sordino, P. (2007). Cryptic speciation in a model invertebrate chordate. Proceedings of the National Academy of Sciences of the United States of America 104, 9364–9369.
Cryptic speciation in a model invertebrate chordate.Crossref | GoogleScholarGoogle Scholar | 17517633PubMed |

Carstens, B. C., Pelletier, T. A., Reid, N. M., and Satler, J. D. (2013). How to fail at species delimitation. Molecular Ecology 22, 4369–4383.
How to fail at species delimitation.Crossref | GoogleScholarGoogle Scholar | 23855767PubMed |

Chenuil, A., Cahill, A. E., Délémontey, N., du Luc, E. D. S., and Fanton, H. (2019). Problems and questions posed by cryptic species – a framework to guide future studies. In ‘From Assessing to Conserving Biodiversity – Conceptual and Practical Challenges’. (Eds E. Casetta, J. M. Silva, and D. Vecchi.) pp. 77–106. (Springer Open: Cham, Switzerland)10.1007/978-3-030-10991-2

Choi, S. C. (2016). Methods for delimiting species via population genetics and phylogenetics using genotype data. Genes & Genomics 38, 905–915.
Methods for delimiting species via population genetics and phylogenetics using genotype data.Crossref | GoogleScholarGoogle Scholar |

Clement, M., Posada, D., and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 11050560PubMed |

Clement, M., Snell, Q., Walker, P., Posada, D., and Crandall, K. (2002). TCS: estimating gene genealogies. Parallel and Distributed Processing Symposium, International Proceedings 2, 184–190.
TCS: estimating gene genealogies.Crossref | GoogleScholarGoogle Scholar |

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 22847109PubMed |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |

Edmands, S. (2002). Does parental divergence predict reproductive compatibility? Trends in Ecology & Evolution 17, 520–527.
Does parental divergence predict reproductive compatibility?Crossref | GoogleScholarGoogle Scholar |

Excoffier, L., Laval, G., and Schneider, S. (2005). ARLEQUIN version 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
ARLEQUIN version 3.0: an integrated software package for population genetics data analysis.Crossref | GoogleScholarGoogle Scholar |

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar | 28561359PubMed |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |

Fujisawa, T., and Barraclough, T. G. (2013). Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62, 707–724.
Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets.Crossref | GoogleScholarGoogle Scholar | 23681854PubMed |

Garrick, R. C., Sunnucks, P., and Dyer, R. J. (2010). Nuclear gene phylogeography using PHASE: dealing with unresolved genotypes, lost alleles, and systematic bias in parameter estimation. Evolutionary Biology 10, 118.
Nuclear gene phylogeography using PHASE: dealing with unresolved genotypes, lost alleles, and systematic bias in parameter estimation.Crossref | GoogleScholarGoogle Scholar | 20429950PubMed |

Goldstein, P. Z., and DeSalle, R. (2011). Integrating DNA barcode data and taxonomic practice: determination, discovery, and description. BioEssays 33, 135–147.
Integrating DNA barcode data and taxonomic practice: determination, discovery, and description.Crossref | GoogleScholarGoogle Scholar | 21184470PubMed |

González-Wangüemert, M., and Vergara-Chen, C. (2014). Environmental variables, habitat discontinuity and life history shaping the genetic structure of Pomatoschistus marmoratus. Helgoland Marine Research 68, 357–371.
Environmental variables, habitat discontinuity and life history shaping the genetic structure of Pomatoschistus marmoratus.Crossref | GoogleScholarGoogle Scholar |

Goodall-Copestake, W. P., Tarling, G. A., and Murphy, E. J. (2012). On the comparison of population-level estimates of haplotype and nucleotide diversity: a case study using the gene cox1 in animals. Heredity 109, 50–56.
On the comparison of population-level estimates of haplotype and nucleotide diversity: a case study using the gene cox1 in animals.Crossref | GoogleScholarGoogle Scholar | 22434013PubMed |

Griggio, F., Voskoboynik, A., Iannelli, F., Justy, F., Tilak, M.-K., Turon, X., Pesole, G., Douzery, E. J. P., Mastrototaro, F., and Gissi, C. (2014). Ascidian mitogenomics: comparison of evolutionary rates in closely related taxa provides evidence of ongoing speciation events. Genome Biology and Evolution 6, 591–605.
Ascidian mitogenomics: comparison of evolutionary rates in closely related taxa provides evidence of ongoing speciation events.Crossref | GoogleScholarGoogle Scholar | 24572017PubMed |

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence aligment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.

Hartl, D. L., and Clark, A. G. (2007). ‘Principles of Population Genetics’, 4th edn. (Sinauer Associates: Sunderland, MA, USA.)

Hellmuth, M., Wieseke, N., Lechner, M., Lenhof, H. P., Middendorf, M., and Stadler, P. F. (2015). Phylogenomics with paralogs. Proceedings of the National Academy of Sciences of the United States of America 112, 2058–2063.
Phylogenomics with paralogs.Crossref | GoogleScholarGoogle Scholar | 25646426PubMed |

Hillis, D. M., Moritz, C., and Mable, B. K. (1996). ‘Molecular Systematics.’ (Sinauer: Sunderland, MA, USA.)

Huelsenbeck, J. P., and Rannala, B. (2004). Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology 53, 904–913.
Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models.Crossref | GoogleScholarGoogle Scholar |

Jarman, S. N., Ward, R. D., and Elliott, N. G. (2002). Oligonucleotide primers for PCR amplification of coelomate introns. Marine Biotechnology 4, 347–355.
Oligonucleotide primers for PCR amplification of coelomate introns.Crossref | GoogleScholarGoogle Scholar | 14961246PubMed |

Jörger, K. M., and Schrödl, M. (2013). How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology 10, 59.
How to describe a cryptic species? Practical challenges of molecular taxonomy.Crossref | GoogleScholarGoogle Scholar | 24073641PubMed |

Jörger, K. M., Norenburg, J. L., Wilson, N. G., and Schrödl, M. (2012). Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs. Evolutionary Biology 12, 245.
Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs.Crossref | GoogleScholarGoogle Scholar | 23244441PubMed |

Katoh, K. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 12136088PubMed |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Katoh, K., Rozewicki, J., and Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20, 1160–1166.
MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization.Crossref | GoogleScholarGoogle Scholar | 28968734PubMed |

Keigwin, L. D. (1978). Pliocene closing of the Isthmus of Panama based on biostratigraphic evidence from nearby Pacific Ocean and Caribbean Sea cores. Geology 6, 630–634.
Pliocene closing of the Isthmus of Panama based on biostratigraphic evidence from nearby Pacific Ocean and Caribbean Sea cores.Crossref | GoogleScholarGoogle Scholar |

Kekkonen, M., and Hebert, P. D. N. (2014). DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources 14, 706–715.
DNA barcode-based delineation of putative species: efficient start for taxonomic workflows.Crossref | GoogleScholarGoogle Scholar | 24479435PubMed |

Kelly, R. P., Sarkar, I. N., Eernisse, D. J., and DeSalle, R. (2007). DNA barcoding using chitons (genus Mopalia). Molecular Ecology Notes 7, 177–183.
DNA barcoding using chitons (genus Mopalia).Crossref | GoogleScholarGoogle Scholar |

Kimura, M. (1981). Possibility of extensive neutral evolution under stabilizing selection with special reference to nonrandom usage of synonymous codons. Proceedings of the National Academy of Sciences of the United States of America 78, 5773–5777.
Possibility of extensive neutral evolution under stabilizing selection with special reference to nonrandom usage of synonymous codons.Crossref | GoogleScholarGoogle Scholar | 6946514PubMed |

Knowlton, N. (2000). Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420, 73–90.
Molecular genetic analyses of species boundaries in the sea.Crossref | GoogleScholarGoogle Scholar |

Kondow, A., Suzuki, T., Yokobori, S., Ueda, T., and Watanabe, K. (1999). An extra tRNAGly(U*CU) found in ascidian mitochondria responsible for decoding non-universal codons AGA/AGG as glycine. Nucleic Acids Research 27, 2554–2559.
An extra tRNAGly(U*CU) found in ascidian mitochondria responsible for decoding non-universal codons AGA/AGG as glycine.Crossref | GoogleScholarGoogle Scholar | 10352185PubMed |

Korneliussen, T. S., Moltke, I., Albrechtsen, A., and Nielsen, R. (2013). Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinformatics 14, 289.
Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data.Crossref | GoogleScholarGoogle Scholar | 24088262PubMed |

Korshunova, T., Martynov, A., Bakken, T., and Picton, B. (2017). External diversity is restrained by internal conservatism: new nudibranch mollusc contributes to the cryptic species problem. Zoologica Scripta 46, 683–692.
External diversity is restrained by internal conservatism: new nudibranch mollusc contributes to the cryptic species problem.Crossref | GoogleScholarGoogle Scholar |

Kott, P. (1985). The Australian Ascidiacea. Part I, Phlebobranchia and Stolidobranchia. Memoirs of the Queensland Museum 23, 1–440.

Lambert, G. (2002). Nonindigenous ascidians in tropical waters. Pacific Science 56, 291–298.
Nonindigenous ascidians in tropical waters.Crossref | GoogleScholarGoogle Scholar |

Lejeusne, C., Saunier, A., Petit, N., Béguer, M., Otani, M., Carlton, J. T., Rico, C., and Green, A. J. (2015). High genetic diversity and absence of founder effects in a worldwide aquatic invader. Scientific Reports 4, 5808.
High genetic diversity and absence of founder effects in a worldwide aquatic invader.Crossref | GoogleScholarGoogle Scholar |

Lemey, P., Salemi, M., and Vandamme, A.-M. (2009). ‘The Phylogenetic Handbook. A Practical Approach to Phylogenetic Analysis and Hypothesis Testing.’ (Cambridge University Press: New York, NY, USA.) 10.1017/CBO9780511819049

Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 19346325PubMed |

López-Legentil, S., Turon, X., and Planes, S. (2006). Genetic structure of the star sea squirt, Botryllus schlosseri, introduced in southern European harbours. Molecular Ecology 15, 3957–3967.
Genetic structure of the star sea squirt, Botryllus schlosseri, introduced in southern European harbours.Crossref | GoogleScholarGoogle Scholar | 17054496PubMed |

López-Márquez, V., Acevedo, I., Manjón-Cabeza, M. E., García-Jiménez, R., Templado, J., and Machordom, A. (2018). Looking for morphological evidence of cryptic species in Asterina Nardo, 1834 (Echinodermata: Asteroidea). The redescription of Asterina pancerii (Gasco, 1870) and the description of two new species. Invertebrate Systematics 32, 505–523.
Looking for morphological evidence of cryptic species in Asterina Nardo, 1834 (Echinodermata: Asteroidea). The redescription of Asterina pancerii (Gasco, 1870) and the description of two new species.Crossref | GoogleScholarGoogle Scholar |

Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209–220.
| 6018555PubMed |

Martin, D., and Rybicki, E. (2000). RDP: detection of recombination amongst aligned sequences. Bioinformatics 16, 562–563.
RDP: detection of recombination amongst aligned sequences.Crossref | GoogleScholarGoogle Scholar | 10980155PubMed |

Martin, D. P., Murrel, B., Golden, M., Khoosal, A., and Muhire, B. (2015). RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evolution 1, 1–5.
RDP4: detection and analysis of recombination patterns in virus genomes.Crossref | GoogleScholarGoogle Scholar |

Maydem, R. L. (1997). A hierarchy of species concepts: the denouement in the saga of the species problem. In ‘Species: The Units of Biodiversity’. (Eds M. F. Claridge, H. A. Dawa, and M. R. Wilson.) pp. 381–424. (Chapman and Hall: London, UK.)

Mayr, E. (1996). What is a species, and what is not? Philosophy of Science 63, 262–277.
What is a species, and what is not?Crossref | GoogleScholarGoogle Scholar |

Megan, M., Pierossi, P., and Ratnasingham, S. (2013). ‘BoldSystems. Barcode of Life Data Systems Handbook. v. 3.6.’ (Biodiversity Institute of Ontario: Guelph, ON, Canada.)

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession number 11705685. (Institute of Electrical and Electronics Engineers.) 10.1109/GCE.2010.5676129

Miya, T., Makabe, K. W., and Satoh, N. (1994). Expression of a gene for major mitochondrial protein, ADP/ATP translocase, during embryogenesis in the ascidian Halocynthia roretzi. Development, Growth & Differentiation 36, 39–48.
Expression of a gene for major mitochondrial protein, ADP/ATP translocase, during embryogenesis in the ascidian Halocynthia roretzi.Crossref | GoogleScholarGoogle Scholar |

Morard, R., Escarguel, G., Weiner, A. K. M., Andre, A., Douady, C. J., Wade, C. M., Darling, K. F., Ujiie, Y., Seears, H. A., Quillevere, F., de Garidel-Thoron, T., de Vargas, C., and Kucera, M. (2016). Nomenclature for the nameless: a proposal for an integrative molecular taxonomy of cryptic diversity exemplified by planktonic foraminifera. Systematic Biology 65, 925–940.
Nomenclature for the nameless: a proposal for an integrative molecular taxonomy of cryptic diversity exemplified by planktonic foraminifera.Crossref | GoogleScholarGoogle Scholar | 27073250PubMed |

Neigel, J. E., and Avise, J. C. (1986). Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In ‘Evolutionary Processes and Theory. Part V. Population Genetics: Observation, Experiment and Theory’. (Eds S. Karlin, and E. Nevo.) pp. 515–534. (Academic Press: Orlando, FL, USA.) 10.1016/B978-0-12-398760-0.50026-2

Nydam, M. L., and Harrison, R. G. (2007). Genealogical relationships within and among shallow-water Ciona species (Ascidiacea). Marine Biology 151, 1839–1847.
Genealogical relationships within and among shallow-water Ciona species (Ascidiacea).Crossref | GoogleScholarGoogle Scholar |

Nydam, M. L., and Harrison, R. G. (2010). Polymorphism and divergence within the ascidian genus Ciona. Molecular Phylogenetics and Evolution 56, 718–726.
Polymorphism and divergence within the ascidian genus Ciona.Crossref | GoogleScholarGoogle Scholar | 20403444PubMed |

Nydam, M. L., and Harrison, R. G. (2011). Introgression despite substantial divergence in a broadcast spawning marine invertebrate. Evolution 65, 429–442.
Introgression despite substantial divergence in a broadcast spawning marine invertebrate.Crossref | GoogleScholarGoogle Scholar | 21044056PubMed |

Nydam, M. L., Giesbrecht, K. B., and Stephenson, E. E. (2017). Origin and dispersal history of two colonial ascidian clades in the Botryllus schlosseri species complex. PLoS One 12, e0169944.
Origin and dispersal history of two colonial ascidian clades in the Botryllus schlosseri species complex.Crossref | GoogleScholarGoogle Scholar | 28107476PubMed |

Padial, J. M., Castroviejo-Fisher, S., Köhler, J., Vilà, C., Chaparro, J. C., and De la Riva, I. (2009). Deciphering the products of evolution at the species level: the need for an integrative taxonomy. Zoologica Scripta 38, 431–447.
Deciphering the products of evolution at the species level: the need for an integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Palumbi, S. R. (1994). Genetic divergence, reproductive isolation and marine speciation. Annual Review of Ecology and Systematics 25, 547–572.
Genetic divergence, reproductive isolation and marine speciation.Crossref | GoogleScholarGoogle Scholar |

Palumbi, S. R., and Baker, C. S. (1994). Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Molecular Biology and Evolution 11, 426–435.
| 7912407PubMed |

Pante, E., Puillandre, N., Viricel, A., Arnaud-Haond, S., Aurelle, D., Castelin, M., Chenuil, A., Destombe, C., Forcioli, D., Valero, M., Viard, F., and Samadi, S. (2015). Species are hypotheses: avoid connectivity assessments based on pillars of sand. Molecular Ecology 24, 525–544.
Species are hypotheses: avoid connectivity assessments based on pillars of sand.Crossref | GoogleScholarGoogle Scholar | 25529046PubMed |

Pennati, R., Ficetola, G. F., Brunetti, R., Caicci, F., Gasparini, F., Griggio, F., Sato, A., Stach, T., Kaul-Strehlow, S., Gissi, C., and Manni, L. (2015). Morphological differences between larvae of the Ciona intestinalis species complex: hints for a valid taxonomic definition of distinct species. PLoS One 10, e0122879.
Morphological differences between larvae of the Ciona intestinalis species complex: hints for a valid taxonomic definition of distinct species.Crossref | GoogleScholarGoogle Scholar | 25955391PubMed |

Pérez-Portela, R., Bishop, J. D. D., Davis, A. R., and Turon, X. (2009). Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) inferred from mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 50, 560–570.
Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) inferred from mitochondrial and nuclear DNA sequences.Crossref | GoogleScholarGoogle Scholar | 19059353PubMed |

Pérez-Portela, R., Almada, V., and Turon, X. (2013a). Cryptic speciation and genetic structure of widely distributed brittle stars (Ophiuroidea) in Europe. Zoologica Scripta 42, 151–169.
Cryptic speciation and genetic structure of widely distributed brittle stars (Ophiuroidea) in Europe.Crossref | GoogleScholarGoogle Scholar |

Pérez-Portela, R., Arranz, V., Rius, M., and Turon, X. (2013b). Cryptic speciation or global spread? The case of a cosmopolitan marine invertebrate with limited dispersal capabilities. Scientific Reports 3, 3197.
Cryptic speciation or global spread? The case of a cosmopolitan marine invertebrate with limited dispersal capabilities.Crossref | GoogleScholarGoogle Scholar | 24217373PubMed |

Pfenninger, M., and Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7, 121.
Cryptic animal species are homogeneously distributed among taxa and biogeographical regions.Crossref | GoogleScholarGoogle Scholar | 17640383PubMed |

Pineda, M. C., López-Legentil, S., and Turon, X. (2011). The whereabouts of an ancient wanderer: global phylogeography of the solitary ascidian Styela plicata. PLoS One 6, e25495.
The whereabouts of an ancient wanderer: global phylogeography of the solitary ascidian Styela plicata.Crossref | GoogleScholarGoogle Scholar | 21966535PubMed |

Pons, J., Barraclough, T., Gomez-Zurita, J., Cardoso, A., Duran, D., Hazell, S., Kamoun, S., Sumlin, W. D., and Vogler, A. P. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
Sequence-based species delimitation for the DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar | 16967577PubMed |

Powell, S. J., Medd, S. M., Runswick, M. J., and Walker, J. E. (1989). Two bovine genes for mitochondrial ADP/ATP translocase expressed differently in various tissues. Biochemistry 28, 866–873.
Two bovine genes for mitochondrial ADP/ATP translocase expressed differently in various tissues.Crossref | GoogleScholarGoogle Scholar | 2540808PubMed |

Puillandre, N., Lamberts, A., Brouillet, S., and Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
ABGD, Automatic Barcode Gap Discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar | 21883587PubMed |

Rach, J., DeSalle, R., Sarkar, I. N., Schierwater, B., and Hadrys, H. (2008). Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata. Proceedings. Biological Sciences 275, 237–247.
Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata.Crossref | GoogleScholarGoogle Scholar | 17999953PubMed |

Rannala, B., and Yang, Z. (2003). Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164, 1645–1656.
| 12930768PubMed |

Rannala, B., and Yang, Z. (2013). Improved reversible jump algorithms for Bayesian species delimitation. Genetics 194, 245–253.
Improved reversible jump algorithms for Bayesian species delimitation.Crossref | GoogleScholarGoogle Scholar | 23502678PubMed |

Ratnasingham, S., and Hebert, P. D. N. (2007). BOLD: the barcode of life data system (www.barcodinglife.org). Molecular Ecology Notes 7, 355–364.
BOLD: the barcode of life data system (www.barcodinglife.org).Crossref | GoogleScholarGoogle Scholar | 18784790PubMed |

Raymond, M., and Rousset, F. (1995). An exact test for population differentiation. Evolution 49, 1280–1283.
An exact test for population differentiation.Crossref | GoogleScholarGoogle Scholar | 28568523PubMed |

Razkin, O., Gómez-Moliner, B. J., Vardinoyannis, K., Martínez-Ortí, A., and Madeira, M. J. (2017). Species delimitation for cryptic species complexes: case study of Pyramidula (Gastropoda, Pulmonata). Zoologica Scripta 46, 55–72.
Species delimitation for cryptic species complexes: case study of Pyramidula (Gastropoda, Pulmonata).Crossref | GoogleScholarGoogle Scholar |

Rius, M., and Teske, P. R. (2011). A revision of the Pyura stolonifera species complex (Tunicata, Ascidiacea), with a description of a new species from Australia. Zootaxa 2754, 27–40.
A revision of the Pyura stolonifera species complex (Tunicata, Ascidiacea), with a description of a new species from Australia.Crossref | GoogleScholarGoogle Scholar |

Rius, M., and Teske, P. R. (2013). Cryptic diversity in coastal Australasia: a morphological and mitonuclear genetic analysis of habitat-forming sibling species. Zoological Journal of the Linnean Society 168, 597–611.
Cryptic diversity in coastal Australasia: a morphological and mitonuclear genetic analysis of habitat-forming sibling species.Crossref | GoogleScholarGoogle Scholar |

Rius, M., Pascual, M., and Turon, X. (2008). Phylogeography of the widespread marine invader Microcosmus squamiger (Ascidiacea) reveals high genetic diversity of introduced populations and non-independent colonizations. Diversity & Distributions 14, 818–828.
Phylogeography of the widespread marine invader Microcosmus squamiger (Ascidiacea) reveals high genetic diversity of introduced populations and non-independent colonizations.Crossref | GoogleScholarGoogle Scholar |

Roman, J., and Darling, J. A. (2007). Paradox lost: genetic diversity and the success of aquatic invasions. Trends in Ecology & Evolution 22, 454–464.
Paradox lost: genetic diversity and the success of aquatic invasions.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F-statistics under isolation by distances. Genetics 145, 1219–1228.
| 9093870PubMed |

Roux, C., Tsagkogeorga, G., Bierne, N., and Galtier, N. (2013). Crossing the species barrier: genomic hotspots of introgression between two highly divergent Ciona intestinalis species. Molecular Biology and Evolution 30, 1574–1587.
Crossing the species barrier: genomic hotspots of introgression between two highly divergent Ciona intestinalis species.Crossref | GoogleScholarGoogle Scholar | 23564941PubMed |

Sanford, E., and Kelly, M. W. (2011). Local adaptation in marine invertebrates. Annual Review of Marine Science 3, 509–535.
Local adaptation in marine invertebrates.Crossref | GoogleScholarGoogle Scholar | 21329215PubMed |

Sato, A., Satoh, N., and Bishop, J. D. D. (2012). Field identification of ‘types’ A and B of the ascidian Ciona intestinalis in a region of sympatry. Marine Biology 159, 1611–1619.
Field identification of ‘types’ A and B of the ascidian Ciona intestinalis in a region of sympatry.Crossref | GoogleScholarGoogle Scholar |

Savigny, J. C. (1816). ‘Mémoires sur les Animaux sans Vertèbres. Seconde Partie - Description et Classification des Animaux Invertébrés, non Articulés, Connus sous les Noms de Mollusques, de Radiaires, de Polypes, etc.’ (Panckoucke: Paris, France.) 10.5962/bhl.title.125538

Sheets, E. A., Cohen, C. S., Ruiz, G. M., and Rocha, R. M. (2016). Investigating the widespread introduction of a tropical marine fouling species. Ecology and Evolution 6, 2453–2471.
Investigating the widespread introduction of a tropical marine fouling species.Crossref | GoogleScholarGoogle Scholar | 27066231PubMed |

Shenkar, N., Shmuel, Y., and Huchon, D. (2018). The invasive ascidian Ciona robusta recorded from a Red Sea marina. Marine Biodiversity 48, 2211–2214.
The invasive ascidian Ciona robusta recorded from a Red Sea marina.Crossref | GoogleScholarGoogle Scholar |

Shertzer, H. G., and Racker, E. (1976). Reconstitution and characterization of the adenine nucleotide transporter derived from bovine heart mitochondria. The Journal of Biological Chemistry 251, 2446–2452.

Sjöstrand, A. E., Sjödin, P., and Jakobsson, M. (2014). Private haplotypes can reveal local adaptation. BMC Genetics 15, 61.
Private haplotypes can reveal local adaptation.Crossref | GoogleScholarGoogle Scholar | 24885734PubMed |

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Stephens, M., and Donnelly, P. (2003). A comparison of Bayesian methods for haplotype reconstruction from population genotype data. American Journal of Human Genetics 73, 1162–1169.
A comparison of Bayesian methods for haplotype reconstruction from population genotype data.Crossref | GoogleScholarGoogle Scholar | 14574645PubMed |

Stephens, M., Smith, N. J., and Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68, 978–989.
A new statistical method for haplotype reconstruction from population data.Crossref | GoogleScholarGoogle Scholar | 11254454PubMed |

Sukumaran, J., and Knowles, L. L. (2017). Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences of the United States of America 114, 1607–1612.
Multispecies coalescent delimits structure, not species.Crossref | GoogleScholarGoogle Scholar | 28137871PubMed |

Suzuki, M. M., Nishikawa, T., and Bird, A. (2005). Genomic approaches reveal unexpected genetic divergence within Ciona intestinalis. Journal of Molecular Evolution 61, 627–635.
Genomic approaches reveal unexpected genetic divergence within Ciona intestinalis.Crossref | GoogleScholarGoogle Scholar | 16205978PubMed |

Taboada, S., Leiva, C., Bas, M., Schult, N., and McHugh, D. (2017). Cryptic species and colonization processes in Ophryotrocha (Annelida, Dorvilleidae) inhabiting vertebrate remains in the shallow-water Mediterranean. Zoologica Scripta 46, 611–624.
Cryptic species and colonization processes in Ophryotrocha (Annelida, Dorvilleidae) inhabiting vertebrate remains in the shallow-water Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
| 2513255PubMed |

Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512–526.
| 8336541PubMed |

Tarjuelo, I., Posada, D., Crandall, K. A., Pascual, M., and Turon, X. (2001). Cryptic species of Clavelina (Ascidiacea) in two different habitats: harbours and rocky littoral zones in the northwestern Mediterranean. Marine Biology 139, 455–462.
Cryptic species of Clavelina (Ascidiacea) in two different habitats: harbours and rocky littoral zones in the northwestern Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Tarjuelo, I., Posada, D., Crandall, K. A., Pascual, M., and Turon, X. (2004). Phylogeography and speciation of colour morphs in the colonial ascidian Pseudodistoma crucigaster. Molecular Ecology 13, 3125–3136.
Phylogeography and speciation of colour morphs in the colonial ascidian Pseudodistoma crucigaster.Crossref | GoogleScholarGoogle Scholar | 15367125PubMed |

Templeton, A. R. (2001). Using phylogeographic analyses of gene trees to test species status and processes. Molecular Ecology 10, 779–791.
Using phylogeographic analyses of gene trees to test species status and processes.Crossref | GoogleScholarGoogle Scholar | 11298987PubMed |

Templeton, A. R., Crandall, K. A., and Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. Genetics 132, 619–633.
| 1385266PubMed |

Teske, P. R., Rius, M., McQuaid, C. D., Styan, C. A., Piggott, M. P., Benhissoune, S., Fuentes-Grünewald, C., Walls, K., Page, M., Attard, C. R. M., Cooke, G. M., McClusky, C. F., Banks, S. C., Barker, N. P., and Beheregaray, L. B. (2011). ‘Nested’ cryptic diversity in a widespread marine ecosystem engineer: a challenge for detecting biological invasions. BMC Evolutionary Biology 11, 176.
‘Nested’ cryptic diversity in a widespread marine ecosystem engineer: a challenge for detecting biological invasions.Crossref | GoogleScholarGoogle Scholar | 21693014PubMed |

Teske, P. R., Papadopoulos, I., Barker, N. P., McQuaid, C. D., and Beheregaray, L. B. (2014). Mitonuclear discordance in genetic structure across the Atlantic/Indian Ocean biogeographical transition zone. Journal of Biogeography 41, 392–401.
Mitonuclear discordance in genetic structure across the Atlantic/Indian Ocean biogeographical transition zone.Crossref | GoogleScholarGoogle Scholar |

Turon, X., and López-Legentil, S. (2004). Ascidian molecular phylogeny inferred from mtDNA data with emphasis on the Aplousobranchiata. Molecular Phylogenetics and Evolution 33, 309–320.
Ascidian molecular phylogeny inferred from mtDNA data with emphasis on the Aplousobranchiata.Crossref | GoogleScholarGoogle Scholar | 15336666PubMed |

Turon, X., Tarjuelo, I., Duran, S., and Pascual, M. (2003). Characterising invasion processes with genetic data: an Atlantic clade of Clavelina lepadiformis (Ascidiacea) introduced into Mediterranean harbours. Hydrobiologia 503, 29–35.
Characterising invasion processes with genetic data: an Atlantic clade of Clavelina lepadiformis (Ascidiacea) introduced into Mediterranean harbours.Crossref | GoogleScholarGoogle Scholar |

Vergara-Chen, C., González-Wangüemert, M., Marcos, C., and Pérez-Ruzaf, A. (2010). Genetic diversity and connectivity remain high in Holothuria polii (Delle Chiaje 1823) across a coastal lagoon-open sea environmental gradient. Genetica 138, 895–906.
Genetic diversity and connectivity remain high in Holothuria polii (Delle Chiaje 1823) across a coastal lagoon-open sea environmental gradient.Crossref | GoogleScholarGoogle Scholar | 20623364PubMed |

Wong, E. H.-K., Shivji, M. S., and Hanner, R. H. (2009). Identifying sharks with DNA barcodes: assessing the utility of a nucleotide diagnostic approach. Molecular Ecology Resources 9, 243–256.
Identifying sharks with DNA barcodes: assessing the utility of a nucleotide diagnostic approach.Crossref | GoogleScholarGoogle Scholar |

Wu, C.-I. (2001). The genic view of the process of speciation. Journal of Evolutionary Biology 14, 851–865.
The genic view of the process of speciation.Crossref | GoogleScholarGoogle Scholar |

Xia, X. (2009). Assessing substitution saturation with DAMBE. In ‘The Phylogenetic Handbook: a Practical Approach to Phylogenetic Analysis and Hypothesis Testing’. (Eds P. Lemey, M. Salemi, and A. Vandamme.) pp. 615–630. (Cambridge University Press: Cambridge, UK.) 10.1017/CBO9780511819049.022

Xia, X. (2013). DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution 30, 1720–1728.
DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution.Crossref | GoogleScholarGoogle Scholar | 23564938PubMed |

Xia, X., Hafner, M. S., and Sudman, P. D. (1996). On transition bias in mitochondrial genes of pocket gophers. Journal of Molecular Evolution 43, 32–40.
On transition bias in mitochondrial genes of pocket gophers.Crossref | GoogleScholarGoogle Scholar | 8660427PubMed |

Xia, X., Xie, Z., Salemi, M., Chen, L., and Wang, Y. (2003). An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26, 1–7.
An index of substitution saturation and its application.Crossref | GoogleScholarGoogle Scholar | 12470932PubMed |

Yang, Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology 61, 854–865.
The BPP program for species tree estimation and species delimitation.Crossref | GoogleScholarGoogle Scholar |

Yang, Z., and Rannala, B. (2010). Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences of the United States of America 107, 9264–9269.
Bayesian species delimitation using multilocus sequence data.Crossref | GoogleScholarGoogle Scholar | 20439743PubMed |

Yokobori, S., Ueda, T., and Watanabe, K. (1993). Codons AGA and AGG are read as glycine in ascidian mitochondria. Journal of Molecular Evolution 36, 1–8.
Codons AGA and AGG are read as glycine in ascidian mitochondria.Crossref | GoogleScholarGoogle Scholar | 8381878PubMed |

Zhan, A., Macisaac, H. J., and Cristescu, M. E. (2010). Invasion genetics of the Ciona intestinalis species complex: from regional endemism to global homogeneity. Molecular Ecology 19, 4678–4694.
Invasion genetics of the Ciona intestinalis species complex: from regional endemism to global homogeneity.Crossref | GoogleScholarGoogle Scholar | 20875067PubMed |

Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar | 23990417PubMed |