Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

The systematics and phylogenetic position of the troglobitic Australian spider genus Troglodiplura (Araneae : Mygalomorphae), with a new classification for Anamidae

Mark S. Harvey https://orcid.org/0000-0003-1482-0109 A B F , Michael G. Rix https://orcid.org/0000-0001-5086-3638 C A , Mia J. Hillyer A and Joel A. Huey https://orcid.org/0000-0001-7108-0552 A B D E
+ Author Affiliations
- Author Affiliations

A Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia.

B School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia.

C Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, Qld 4101, Australia.

D School of Natural Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.

E Present address: Biologic Environmental Survey, East Perth, WA 6004, Australia.

F Corresponding author. Email: mark.harvey@museum.wa.gov.au

Invertebrate Systematics 34(8) 799-822 https://doi.org/10.1071/IS20034
Submitted: 26 April 2020  Accepted: 1 July 2020   Published: 11 November 2020

Abstract

Compared with araneomorph spiders, relatively few mygalomorph spiders have evolved an obligate existence in subterranean habitats. The trapdoor spider genus Troglodiplura Main, 1969 and its sole named species T. lowryi Main, 1969 is endemic to caves on the Nullarbor Plain of southern Australia, and is one of the world’s most troglomorphic mygalomorph spiders. However, its systematic position has proved to be difficult to ascertain, largely due to a lack of preserved adults, with all museum specimens represented only by cuticular fragments, degraded specimens or preserved juveniles. The systematic placement of Troglodiplura has changed since it was first described as a member of the Dipluridae, with later attribution to Nemesiidae and then back to Dipluridae. The most recent hypothesis specifically allied Troglodiplura with the Neotropical subfamily Diplurinae, and therefore was assumed to have no close living relatives in Australia. We obtained mitochondrial sequence data from one specimen of Troglodiplura to test these two competing hypotheses, and found that Troglodiplura is a member of the family Anamidae (which was recently separated from the Nemesiidae). We also reassess the morphology of the cuticular fragments of specimens from several different caves, and hypothesise that along with T. lowryi there are four new troglobitic species, here named T. beirutpakbarai Harvey & Rix, T. challeni Harvey & Rix, T. harrisi Harvey & Rix, and T. samankunani Harvey & Rix, each of which is restricted to a single cave system and therefore severely threatened by changing environmental conditions within the caves. The first descriptions and illustrations of the female spermathecae of Troglodiplura are provided. The family Anamidae is further divided into two subfamilies, with the Anaminae Simon containing Aname L. Koch, 1873, Hesperonatalius Castalanelli, Huey, Hillyer & Harvey, 2017, Kwonkan Main, 1983, Swolnpes Main & Framenau, 2009 and Troglodiplura, and the Teylinae Main including Chenistonia Hogg, 1901, Namea Raven, 1984, Proshermacha Simon, 1909, Teyl Main, 1975 and Teyloides Main, 1985.

ZooBank Registration: http://zoobank.org/References/2BE2B429-0998-4AFE-9381-B30BDC391E9C

Keywords: Australasia, Avicularioidea, molecular phylogenetics, Nemesioidina, taxonomy.


References

Arnedo, M., Oromí, P., Múrria, C., Macías-Hernández, N., and Ribera, C. (2007). The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera Latreille (Araneae: Dysderidae) in the Canary Islands. Invertebrate Systematics 21, 623–660.
The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera Latreille (Araneae: Dysderidae) in the Canary Islands.Crossref | GoogleScholarGoogle Scholar |

Ayoub, N. A., Garb, J. E., Hedin, M., and Hayashi, C. Y. (2007). Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1γ), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae). Molecular Phylogenetics and Evolution 42, 394–409.
Utility of the nuclear protein-coding gene, elongation factor-1 gamma (EF-1γ), for spider systematics, emphasizing family level relationships of tarantulas and their kin (Araneae: Mygalomorphae).Crossref | GoogleScholarGoogle Scholar | 16971146PubMed |

Bertani, R., Bichuette, M. E., and Pedroso, D. R. (2013). Tmesiphantes hypogeus sp. nov. (Araneae, Theraphosidae), the first troglobitic tarantula from Brazil. Anais da Academia Brasileira de Ciências 85, 235–243.
Tmesiphantes hypogeus sp. nov. (Araneae, Theraphosidae), the first troglobitic tarantula from Brazil.Crossref | GoogleScholarGoogle Scholar | 23460434PubMed |

Bond, J. E., Beamer, D. A., Lamb, T., and Hedin, M. (2006). Combining genetic and geospatial analyses to infer population extinction in mygalomorph spiders endemic to the Los Angeles region. Animal Conservation 9, 145–157.
Combining genetic and geospatial analyses to infer population extinction in mygalomorph spiders endemic to the Los Angeles region.Crossref | GoogleScholarGoogle Scholar |

Bond, J. E., Hendrixson, B. E., Hamilton, C. A., and Hedin, M. (2012). A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology. PLoS One 7, e38753.
A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology.Crossref | GoogleScholarGoogle Scholar | 22723885PubMed |

Byrne, M., Yeates, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A. J., Cooper, S., Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., and Wyrwoll, K.-H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 18761619PubMed |

Byrne, M., Steane, D. A., Joseph, L., Yeates, D. K., Jordan, G. J., Crayn, D., Aplin, K., Cantrill, D. J., Cook, L. G., Crisp, M. D., Keogh, J. S., Melville, J., Moritz, C., Porch, N., Sniderman, J. M. K., Sunnucks, P., and Weston, P. H. (2011). Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography 38, 1635–1656.
Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota.Crossref | GoogleScholarGoogle Scholar |

Castalanelli, M. A., Teale, R., Rix, M. G., Kennington, J. W., and Harvey, M. S. (2014). Barcoding of mygalomorph spiders (Araneae: Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota. Invertebrate Systematics 28, 375–385.
Barcoding of mygalomorph spiders (Araneae: Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota.Crossref | GoogleScholarGoogle Scholar |

Castalanelli, M. A., Huey, J. A., Hillyer, M. J., and Harvey, M. S. (2017). Molecular and morphological evidence for a new genus of small trapdoor spiders from arid Western Australia (Araneae: Mygalomorphae: Nemesiidae: Anaminae). Invertebrate Systematics 31, 492–505.
Molecular and morphological evidence for a new genus of small trapdoor spiders from arid Western Australia (Araneae: Mygalomorphae: Nemesiidae: Anaminae).Crossref | GoogleScholarGoogle Scholar |

Castalanelli, M. A., Framenau, V. W., Huey, J. A., Hillyer, M. J., and Harvey, M. S. (2020). New species of the open-holed trapdoor spider genus Aname (Araneae: Mygalomorphae: Anamidae) from arid Western Australia. The Journal of Arachnology 48, 168–212.

Churchill, T. B., and Raven, R. J. (1992). Systematics of the intertidal trapdoor spider genus Idioctis (Mygalomoprhae: Barychelidae) in the Western Pacific with a new genus from the northeast. Memoirs of the Queensland Museum 32, 9–30.

Coddington, J. A., Giribet, G., Harvey, M. S., Prendini, L., and Walter, D. E. (2004). Arachnida. In ‘Assembling the Tree of Life’. (Eds J. Cracraft, and M. Donoghue.) pp. 296–318. (Oxford University Press: New York, NY, USA.)

Coyle, F. A. (1971). Systematics and natural history of the mygalomorph spider genus Antrodiaetus and related genera (Araneae: Antrodiaetidae). Bulletin of the Museum of Comparative Zoology 141, 269–402.

Dalla Vecchia, F. M., and Selden, P. A. (2013). A Triassic spider from Italy. Acta Palaeontologica Polonica 58, 325–330.
A Triassic spider from Italy.Crossref | GoogleScholarGoogle Scholar |

Drolshagen, B., and Bäckstam, C. M. (2011). Notes on the genus Harmonicon F.O.P.-Cambridge, 1896 (Araneae, Dipluridae) with description of a new species from French Guyana. ZooKeys 112, 89–96.
Notes on the genus Harmonicon F.O.P.-Cambridge, 1896 (Araneae, Dipluridae) with description of a new species from French Guyana.Crossref | GoogleScholarGoogle Scholar |

Eberhard, S. M., and Moulds, T. A. (2007). ‘Subterranean Biodiversity of the Nullarbor Karst – Desktop Study.’ (Subterranean Ecology: Perth, WA, Australia.)

Fage, L. (1929). Sur quelques araignees d’Amerique du Nord et de Cuba. Bollettino del Laboratorio di Zoologia Generale e Agraria del R. Istituto Superiore Agrario in Portici 22, 181–187.

Gertsch, W. J. (1971). A report on some Mexican cave spiders. Bulletin of the Association for Mexican Cave Studies 4, 47–111.

Gertsch, W. J. (1973). A report on cave spiders from Mexica and central America. Bulletin of the Association for Mexican Cave Studies 5, 141–163.

Gertsch, W. J. (1982). The troglobitic mygalomorphs of the Americas. Bulletin of the Association for Mexican Cave Studies 8, 79–94.

Harrison, S. E., Rix, M. G., Harvey, M. S., and Austin, A. D. (2016). An African mygalomorph lineage in temperate Australia: the trapdoor spider genus Moggridgea (Araneae: Migidae) on Kangaroo Island, South Australia. Austral Entomology 55, 208–216.
An African mygalomorph lineage in temperate Australia: the trapdoor spider genus Moggridgea (Araneae: Migidae) on Kangaroo Island, South Australia.Crossref | GoogleScholarGoogle Scholar |

Harrison, S. E., Harvey, M. S., Cooper, S. J. B., Austin, A. D., and Rix, M. G. (2017). Across the Indian Ocean: a remarkable example of trans-oceanic dispersal in an austral mygalomorph spider. PLoS One 12, e0180139.
Across the Indian Ocean: a remarkable example of trans-oceanic dispersal in an austral mygalomorph spider.Crossref | GoogleScholarGoogle Scholar | 28767648PubMed |

Harvey, M. S. (2002). Short-range endemism among the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
Short-range endemism among the Australian fauna: some examples from non-marine environments.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., Shear, W. A., and Hoch, H. (2000). Onychophora, Arachnida, myriapods and Insecta. In ‘Subterranean Ecosystems’. (Eds H. Wilkens, D. C. Culver, and W. F. Humphreys.) pp. 79–94. (Elsevier: Amsterdam, Netherlands.)

Harvey, M. S., Hillyer, M. J., Main, B. Y., Moulds, T. A., Raven, R. J., Rix, M. G., Vink, C. J., and Huey, J. A. (2018). Phylogenetic relationships of the Australasian open-holed trapdoor spiders (Araneae: Mygalomorphae: Nemesiidae: Anaminae): multi-locus molecular analyses resolve the generic classification of a highly diverse lineage. Zoological Journal of the Linnean Society 184, 407–452.
Phylogenetic relationships of the Australasian open-holed trapdoor spiders (Araneae: Mygalomorphae: Nemesiidae: Anaminae): multi-locus molecular analyses resolve the generic classification of a highly diverse lineage.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., Gruber, K., Hillyer, M. J., and Huey, J. A. (in press). Five new species of the open-holed trapdoor spider genus Aname (Araneae: Mygalomorphae: Anamidae) from Western Australia, with a revised generic placement for Aname armigera. Records of the Western Australian Museum , .

Hedin, M. C. (2001). Molecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus Hypochilus (Araneae: Hypochilidae). Molecular Phylogenetics and Evolution 18, 238–251.
Molecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus Hypochilus (Araneae: Hypochilidae).Crossref | GoogleScholarGoogle Scholar | 11161759PubMed |

Hedin, M., and Bond, J. E. (2006). Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification. Molecular Phylogenetics and Evolution 41, 454–471.
Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification.Crossref | GoogleScholarGoogle Scholar | 16815045PubMed |

Hedin, M., Carlson, D., and Coyle, F. (2015). Sky island diversification meets the multispecies coalescent – divergence in the spruce-fir moss spider (Microhexura montivaga, Araneae, Mygalomorphae) on the highest peaks of southern Appalachia. Molecular Ecology 24, 3467–3484.
Sky island diversification meets the multispecies coalescent – divergence in the spruce-fir moss spider (Microhexura montivaga, Araneae, Mygalomorphae) on the highest peaks of southern Appalachia.Crossref | GoogleScholarGoogle Scholar | 26011071PubMed |

Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
MRBAYES: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 11524383PubMed |

Huey, J. A., Hillyer, M. J., and Harvey, M. S. (2019a). Phylogenetic relationships and biogeographic history of the Australian trapdoor spider genus Conothele (Araneae: Mygalomorphae: Halonoproctidae): diversification into arid habitats in an otherwise tropical radiation. Invertebrate Systematics 33, 628–643.
Phylogenetic relationships and biogeographic history of the Australian trapdoor spider genus Conothele (Araneae: Mygalomorphae: Halonoproctidae): diversification into arid habitats in an otherwise tropical radiation.Crossref | GoogleScholarGoogle Scholar |

Huey, J. A., Rix, M. G., Wilson, J. D., Hillyer, M. J., and Harvey, M. S. (2019b). Open-holed trapdoor spiders of the genus Teyl (Mygalomorphae: Nemesiidae: Anamini) from Western Australia’s Pilbara bioregion: a new species and expanded phylogenetic assessment. Zootaxa 4674, 349–362.
Open-holed trapdoor spiders of the genus Teyl (Mygalomorphae: Nemesiidae: Anamini) from Western Australia’s Pilbara bioregion: a new species and expanded phylogenetic assessment.Crossref | GoogleScholarGoogle Scholar |

James, J. M., Contos, A. K., and Barnes, C. M. (2005). Nullarbor Caves, Australia. In ‘Encyclopedia of Caves’. (Eds D. C. Culver and W. B. White.) pp. 418–426. (Elsevier: San Diego, CA, USA.)

James, J. M., Contos, A. K., and Barnes, C. M. (2012). Nullarbor Caves, Australia. In ‘Encyclopedia of Caves’, 2nd edn. (Eds D. C. Culver and W. B. White.) pp. 568–576. (Elsevier: San Diego, CA, USA.)

Katoh, K., Misawa, K., Kuma, K.-I., and Mityata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 12136088PubMed |

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 22319168PubMed |

Lüddecke, T., Krehenwinkel, H., Canning, G., Glaw, F., Longhorn, S. J., Tänzler, R., Wendt, I., and Vences, M. (2018). Discovering the silk road: nuclear and mitochondrial sequence data resolve the phylogenetic relationships among theraphosid spider subfamilies. Molecular Phylogenetics and Evolution 119, 63–70.
Discovering the silk road: nuclear and mitochondrial sequence data resolve the phylogenetic relationships among theraphosid spider subfamilies.Crossref | GoogleScholarGoogle Scholar | 29104141PubMed |

Main, B. Y. (1969). A blind mygalomorph spider from a Nullarbor Plain Cave. Journal of the Royal Society of Western Australia 52, 9–11.

Main, B. Y. (1983). Further studies on the systematics of Australian Diplurinae (Chelicerata: Mygalomorphae: Dipluridae): two new genera from southwestern Australia. Journal of Natural History 17, 923–949.
Further studies on the systematics of Australian Diplurinae (Chelicerata: Mygalomorphae: Dipluridae): two new genera from southwestern Australia.Crossref | GoogleScholarGoogle Scholar |

Main, B. Y. (1987). Persistence of invertebrates in small areas: case studies of trapdoor spiders in Western Australia. In ‘Nature Conservation: the Role of Remnants of Native Vegetation’. (Eds D. A. Saunders, G. W. Arnold, A. A. Burbidge, and A. J. M. Hopkins.) pp. 29–39. (Surrey Beatty & Sons: Sydney, NSW, Australia.)

Main, B. Y. (1993). Biogeographic significance of the Nullarbor cave mygalomorph spider Troglodiplura and its taxonomic affinities. Journal of the Royal Society of Western Australia 76, 77–85.

Main, B. Y., and Gray, M. R. (1985). Further studies on the systematics of Australian Diplurinae (Chelicerata: Mygalomorphae: Dipluridae): description of the male of Troglodiplura lowryi, with notes on its affinities. Psyche 92, 151–162.
Further studies on the systematics of Australian Diplurinae (Chelicerata: Mygalomorphae: Dipluridae): description of the male of Troglodiplura lowryi, with notes on its affinities.Crossref | GoogleScholarGoogle Scholar |

Mammola, S., and Isaia, M. (2017). Spiders in caves. Proceedings of the Royal Society of London – B. Biological Sciences 284, 20170193.
Spiders in caves.Crossref | GoogleScholarGoogle Scholar |

Maréchal, P., and Marty, C. (1998). Réhabilitation du genre Harmonicon (Pickard-Cambridge, 1896) et description d’une nouvelle espèce de Guyane française (Araneae, Mygalomorphae, Dipluridae). Zoosystema 20, 499–504.

Mason, L. D., Tomlinson, S., Withers, P. C., and Main, B. Y. (2013). Thermal and hygric physiology of Australian burrowing mygalomorph spiders (Aganippe spp.). Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 183, 71–82.
Thermal and hygric physiology of Australian burrowing mygalomorph spiders (Aganippe spp.).Crossref | GoogleScholarGoogle Scholar | 22911375PubMed |

Mendoza, J., and Francke, O. F. (2017). Systematic revision of Brachypelma red-kneed tarantulas (Araneae : Theraphosidae), and the use of DNA barcodes to assist in the identification and conservation of CITES-listed species. Invertebrate Systematics 31, 157–179.
Systematic revision of Brachypelma red-kneed tarantulas (Araneae : Theraphosidae), and the use of DNA barcodes to assist in the identification and conservation of CITES-listed species.Crossref | GoogleScholarGoogle Scholar |

Miller, J. A. (2005). Cave adaptation in the spider genus Anthrobia (Araneae, Linyphiidae, Erigoninae). Zoologica Scripta 34, 565–592.
Cave adaptation in the spider genus Anthrobia (Araneae, Linyphiidae, Erigoninae).Crossref | GoogleScholarGoogle Scholar |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number 11705685, pp. 1–8. (IEEE.) https://doi.org/10.1109/gce.2010.567612910.1109/gce.2010.5676129

Opatova, V., Hamilton, C. A., Hedin, M., Montes de Oca, L., Kral, J., and Bond, J. E. (2020). Phylogenetic systematics and evolution of the spider infraorder Mygalomorphae using genomic scale data. Systematic Biology 69, 671–707.
Phylogenetic systematics and evolution of the spider infraorder Mygalomorphae using genomic scale data.Crossref | GoogleScholarGoogle Scholar | 31841157PubMed |

Platnick, N. I., and Gertsch, W. J. (1976). The suborders of spiders: a cladistic analysis (Arachnida, Araneae). American Museum Novitates 2807, 1–15.

Poulson, T. L. (1981). Variations in life history of linyphiid cave spiders. In ‘Eighth International Congress of Speleology, Bowling Green, Kentucky’. (Ed. B. F. Beck.) pp. 60–62. (National Speleological Society: Bowling Green, KY, USA.)

Rainbow, W. J., and Pulleine, R. H. (1918). Australian trap-door spiders. Records of the Australian Museum 12, 81–169.
Australian trap-door spiders.Crossref | GoogleScholarGoogle Scholar |

Raven, R. J. (1979). Systematics of the mygalomorph spider genus Masteria (Masteriinae: Dipluridae: Arachnida). Australian Journal of Zoology 27, 623–636.
Systematics of the mygalomorph spider genus Masteria (Masteriinae: Dipluridae: Arachnida).Crossref | GoogleScholarGoogle Scholar |

Raven, R. J. (1980). The Australian mygalomorph spider genus Ixamatus Simon (Dipluridae: Diplurinae) and its affinities. Bulletin of the British Arachnological Society 5, 43–49.

Raven, R. J. (1981). A review of the Australian genera of the mygalomorph spider subfamily Diplurinae (Dipluridae: Chelicerata). Australian Journal of Zoology 29, 321–363.
A review of the Australian genera of the mygalomorph spider subfamily Diplurinae (Dipluridae: Chelicerata).Crossref | GoogleScholarGoogle Scholar |

Raven, R. J. (1984). Systematics of the Australian curtain-web spiders (Ischnothelinae: Dipluridae: Chelicerata). Australian Journal of Zoology, Supplementary Series 32, 1–102.
Systematics of the Australian curtain-web spiders (Ischnothelinae: Dipluridae: Chelicerata).Crossref | GoogleScholarGoogle Scholar |

Raven, R. J. (1985a). The spider infraorder Mygalomorphae (Araneae): cladistics and systematics. Bulletin of the American Museum of Natural History 182, 1–180.

Raven, R. J. (1985b). A revision of the Aname pallida species-group in northern Australia (Anaminae: Nemesiidae: Araneae). Australian Journal of Zoology 33, 377–409.
A revision of the Aname pallida species-group in northern Australia (Anaminae: Nemesiidae: Araneae).Crossref | GoogleScholarGoogle Scholar |

Raven, R. J. (1991). A revision of the mygalomorph spider family Dipluridae in New Caledonia (Araneae). Mémoires du Muséum national d'histoire naturelle – Série A Zoologie 149, 87–117.

Raven, R. J. (1994). Mygalomorph spiders of the Barychelidae in Australia and the western Pacific. Memoirs of the Queensland Museum 35, 291–706.

Raven, R. J., Jell, P. A., and Knezour, R. A. (2014). Edwa maryae gen. et sp. nov. in the Norian Blackstone Formation of the Ipswich Basin – the first Triassic spider (Mygalomorphae) from Australia. Alcheringa: An Australasian Journal of Palaeontology 259–263, 259–263.
Edwa maryae gen. et sp. nov. in the Norian Blackstone Formation of the Ipswich Basin – the first Triassic spider (Mygalomorphae) from Australia.Crossref | GoogleScholarGoogle Scholar |

Richards, A. M. (1971). An ecological study of the cavernicolous fauna of the Nullarbor Plain, southern Australia. Journal of Zoology 164, 1–60.
An ecological study of the cavernicolous fauna of the Nullarbor Plain, southern Australia.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Edwards, D. L., Byrne, M., Harvey, M. S., Joseph, L., and Roberts, J. D. (2015). Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot. Biological Reviews of the Cambridge Philosophical Society 90, 762–793.
Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar | 25125282PubMed |

Rix, M. G., Cooper, S. J. B., Meusemann, K., Klopfstein, S., Harrison, S. E., Harvey, M. S., and Austin, A. D. (2017a). Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae) Molecular Phylogenetics and Evolution 109, 302–320.
Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae)Crossref | GoogleScholarGoogle Scholar | 28126515PubMed |

Rix, M. G., Huey, J. A., Main, B. Y., Waldock, J. M., Harrison, S. E., Comer, S., Austin, A. D., and Harvey, M. S. (2017b). Where have all the spiders gone? Highlighting the decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia. Austral Entomology 56, 14–22.
Where have all the spiders gone? Highlighting the decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Raven, R. J., Main, B. Y., Harrison, S. E., Austin, A. D., Cooper, S. J. B., and Harvey, M. S. (2017c). The Australasian spiny trapdoor spiders of the family Idiopidae (Mygalomorphae: Arbanitinae): a relimitation and revision at the generic level. Invertebrate Systematics 31, 566–634.
The Australasian spiny trapdoor spiders of the family Idiopidae (Mygalomorphae: Arbanitinae): a relimitation and revision at the generic level.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Huey, J. A., Cooper, S. J. B., Austin, A. D., and Harvey, M. S. (2018). Conservation systematics of the shield-backed trapdoor spiders of the nigrum-group (Mygalomorphae, Idiopidae, Idiosoma): integrative taxonomy reveals a diverse and threatened fauna from south-western Australia. ZooKeys 756, 1–121.
Conservation systematics of the shield-backed trapdoor spiders of the nigrum-group (Mygalomorphae, Idiopidae, Idiosoma): integrative taxonomy reveals a diverse and threatened fauna from south-western Australia.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Wilson, J. D., Rix, A. G., Wojcieszek, A. M., Huey, J. A., and Harvey, M. S. (2019). Population demography and biology of a giant spiny trapdoor spider (Idiopidae: Euoplos) from inland Queensland: developing a ‘slow science’ study system to address a conservation crisis. Austral Entomology 58, 282–297.
Population demography and biology of a giant spiny trapdoor spider (Idiopidae: Euoplos) from inland Queensland: developing a ‘slow science’ study system to address a conservation crisis.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Wilson, J. D., and Harvey, M. S. (2020). First phylogenetic assessment and taxonomic synopsis of the open-holed trapdoor spider genus Namea (Mygalomorphae: Anamidae): a highly diverse mygalomorph lineage from Australia’s tropical eastern rainforests. Invertebrate Systematics 34, 679–726.
First phylogenetic assessment and taxonomic synopsis of the open-holed trapdoor spider genus Namea (Mygalomorphae: Anamidae): a highly diverse mygalomorph lineage from Australia’s tropical eastern rainforests.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., and Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MRBAYES 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 12912839PubMed |

Sanmartín, I., and Ronquist, F. (2004). Southern Hemisphere biogeography analyzed with event-based models: plant versus animal patterns. Systematic Biology 53, 216–243.
Southern Hemisphere biogeography analyzed with event-based models: plant versus animal patterns.Crossref | GoogleScholarGoogle Scholar | 15205050PubMed |

Selden, P. A., and Gall, J. (1992). A Triassic mygalomorph spider from the northern Vosges, France. Palaeontology 35, 211–235.

Simon, E. (1889). Voyage de M. E. Simon au Venezuela (December 1887–Avril 1888), 4e Memoire Arachnides. Annales de la Société Entomologique de France 9, 169–220.

Simon, E. (1892). Arachnides. Etude sur les Arthropodes cavernicoles de île Luzon, Voyage de M. E. Simon aux îles Philippines (mars et avril 1890). Annales de la Société Entomologique de France 61, 35–52.

Smith, H. M. (1983). More on allotypes. Systematic Zoology 32, 454–455.
More on allotypes.Crossref | GoogleScholarGoogle Scholar |

Smith, H. M. (1984). History of the term met-allotype. Systematic Biology 33, 426–427.
History of the term met-allotype.Crossref | GoogleScholarGoogle Scholar |

Sniderman, J. M. K., Woodhead, J. D., Hellstrom, J., Jordan, G. J., Drysdale, R. N., Tyler, J. J., and Porch, N. (2016). Pliocene reversal of late Neogene aridification. Proceedings of the National Academy of Sciences of the United States of America 113, 1999–2004.
Pliocene reversal of late Neogene aridification.Crossref | GoogleScholarGoogle Scholar |

Turner, S. P., Longhorn, S. J., Hamilton, C. A., Gabriel, R., Pérez-Miles, F., and Vogler, A. P. (2018). Re-evaluating conservation priorities of New World tarantulas (Araneae: Theraphosidae) in a molecular framework indicates non-monophyly of the genera, Aphonopelma and Brachypelma. Systematics and Biodiversity 16, 89–107.
Re-evaluating conservation priorities of New World tarantulas (Araneae: Theraphosidae) in a molecular framework indicates non-monophyly of the genera, Aphonopelma and Brachypelma.Crossref | GoogleScholarGoogle Scholar |

Webb, J. A., and James, J. M. (2006). Karst evolution of the Nullarbor Plain, Australia. In ‘Perspectives on Karst Geomorphology, Hydrology, and Geochemistry – a Tribute Volume to Derek C. Ford and William B. White’. (Eds R. S. Harmon and C. Wicks.) Special Paper 404, pp. 65–78. (Geological Society of America.)10.1130/2006.2404(07)

Wheeler, W. C., Coddington, J. A., Crowley, L. M., Dimitrov, D., Goloboff, P. A., Griswold, C. E., Hormiga, G., Prendini, L., Ramírez, M. J., Sierwald, P., Almeida-Silva, L., Alvarez-Padilla, F., Alvarez, F., Arnedo, M. A., Benavides Silva, L. R., Benjamin, S. P., Bond, J. E., Grismado, C. J., Hasan, E., Hedin, M., Izquierdo, M. A., Labarque, F. M., Ledford, J., Lopardo, L., Maddison, W. P., Miller, J. A., Piacentini, L. N., Platnick, N. I., Polotow, D., Silva-Dávila, D., Scharff, N., Szuts, T., Ubick, D., Vink, C. J., Wood, H. M., and Zhangi, J. (2017). The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 33, 574–616.
The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling.Crossref | GoogleScholarGoogle Scholar |

Wilson, J. D., Rix, M. G., Raven, R. J., Schmidt, D. J., and Hughes, J. M. (2019). Systematics of the palisade trapdoor spiders (Euoplos) of south-eastern Queensland (Araneae : Mygalomorphae : Idiopidae): four new species distinguished by their burrow entrance architecture. Invertebrate Systematics 33, 253–276.
Systematics of the palisade trapdoor spiders (Euoplos) of south-eastern Queensland (Araneae : Mygalomorphae : Idiopidae): four new species distinguished by their burrow entrance architecture.Crossref | GoogleScholarGoogle Scholar |