Using multiple lines of evidence to delimit protogynes and deutogynes of four-legged mites: a case study on Epitrimerus sabinae s.l. (Acari : Eriophyidae)
Yue Yin A , Liang-Fei Yao A , Qi Zhang A , Paul D. N. Hebert B and Xiao-Feng Xue A CA Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
B Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
C Corresponding author. Email: xfxue@njau.edu.cn
Invertebrate Systematics 34(7) 757-768 https://doi.org/10.1071/IS20014
Submitted: 16 March 2020 Accepted: 19 May 2020 Published: 8 September 2020
Abstract
Accurate species delimitation is essential for the study of biodiversity, but morphological approaches often provide a limited ability to connect different life stages, sexes or other phenotypic variants in eriophyoid mites because many species possess two phenotypically distinct forms: protogynes and deutogynes. In this study, we analysed the morphological variation in 26 populations of the eriophyoid mite, Epitrimerus sabinae Xue & Hong, 2005 s.l., from sites across its entire known distribution and revealed three morphotypes (LNS: large, normal palp seta d; MBS: medium, bifurcated palp seta d; SBS: small, bifurcated palp seta d) distinguished by body size and structure of dorsal pedipalp genual seta. Five lines of evidence (morphometrics, DNA-based species delimitation, phylogenetics, haplotype network, mitochondrial genome architecture) indicated that the MBS and SBS groups were very distinct from LNS (E. sabinae s.s.). In fact, the MBS and SBS morphotypes are properly placed in the genus Leipothrix with the MBS lineage representing the protogyne of L. juniperensis, sp. nov., whereas the SBS lineage is its deutogyne. By expanding the approaches used to link protogynes and deutogynes of eriophyoid mites, this study provides a way to accelerate the delineation of species boundaries in this important group of plant pests.
Keywords: COI, DNA barcoding, integrative taxonomy, species delimitation, sympatric.
References
Amrine, J. W. Jr, and Manson, D. C. M. (1996). Preparation, mounting and descriptive study of eriophyoid mites. In ‘Eriophyoid Mites: Their Biology, Natural Enemies and Control’. (Eds E. E. Lindquist, M. W. Sabelis, and J. Bruin.) pp. 383–396. (Elsevier: Amsterdam, Netherlands.)Amrine, J. W. Jr, Stasny, T. A., and Flechtmann, C. H. W. (2003). ‘Revised Keys to World Genera of Eriophyoidea (Acari: Prostigmata).’ (Indira Publishing House: Michigan, USA.)
Baker, E. W., Kono, T., Amrine, J. W. Jr, Delfinado-Baker, M., and Stasny, T. A. (1996). ‘Eriophyoid Mites of the United States.’ (Indira Publishing House: Michigan, USA.)
Bandelt, H. J., Forster, P., and Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 37–48.
| Median-joining networks for inferring intraspecific phylogenies.Crossref | GoogleScholarGoogle Scholar | 10331250PubMed |
Britto, E. P. J., Gondim, M. G. C., Navia, D., and Flechtmann, C. H. W. (2008). A new deuterogynous eriophyid mite (Acari: Eriophyidae) with dimorphic males from Caesalpinia echinata (Caesalpiniaceae) from Brazil: description and biological observations. International Journal of Acarology 34, 307–316.
| A new deuterogynous eriophyid mite (Acari: Eriophyidae) with dimorphic males from Caesalpinia echinata (Caesalpiniaceae) from Brazil: description and biological observations.Crossref | GoogleScholarGoogle Scholar |
Chetverikov, P. E., Craemer, C., Cvrković, T., Efimov, P. G., Klimov, P. B., Petanović, R. U., and Sukhareva, S. I. (2019). First pentasetacid mite from Australasian Araucariaceae: morphological description and molecular phylogenetic position of Pentasetacus novozelandicus n. sp. (Eriophyoidea, Pentasetacidae) and remarks on anal lobes in eriophyoid mites. Systematic and Applied Acarology 24, 1284–1309.
| First pentasetacid mite from Australasian Araucariaceae: morphological description and molecular phylogenetic position of Pentasetacus novozelandicus n. sp. (Eriophyoidea, Pentasetacidae) and remarks on anal lobes in eriophyoid mites.Crossref | GoogleScholarGoogle Scholar |
Dabert, J., Ehrnsberger, R., and Dabert, M. (2008). Glaucalges tytonis sp. n. (Analgoidea, Xolalgidae) from the barn owl Tyto alba (Strigiformes, Tytonidae): compiling morphology with DNA barcode data for taxon descriptions in mites (Acari). Zootaxa 1719, 41–52.
Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
| jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 22847109PubMed |
Druciarek, T., Kozak, M., Maroufpoor, M., and Lewandowski, M. (2016). Morphological variability of Phyllocoptes adalius female forms (Acari: Eriophyoidea), with a supplementary description of the species. Systematic and Applied Acarology 21, 181–194.
| Morphological variability of Phyllocoptes adalius female forms (Acari: Eriophyoidea), with a supplementary description of the species.Crossref | GoogleScholarGoogle Scholar |
Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
| BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |
Fujisawa, T., and Barraclough, T. G. (2013). Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62, 707–724.
| Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets.Crossref | GoogleScholarGoogle Scholar | 23681854PubMed |
Guo, J.-F., Li, H.-S., Wang, B., Xue, X.-F., and Hong, X.-Y. (2015). DNA barcoding reveals the protogyne and deutogyne of Tegolophus celtis sp. nov. (Acari: Eriophyidae). Experimental & Applied Acarology 67, 393–410.
| DNA barcoding reveals the protogyne and deutogyne of Tegolophus celtis sp. nov. (Acari: Eriophyidae).Crossref | GoogleScholarGoogle Scholar |
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978.
| Very high resolution interpolated climate surfaces for global land areas.Crossref | GoogleScholarGoogle Scholar |
Husson, F., Lê, S., and Pagès, J. (2010). ‘Exploratory Multivariate Analysis by Example Using R.’ (CRC Press: Boca Raton, FL, USA.)
Jeppson, L. R., Keifer, H. H., and Baker, E. W. (1975). ‘Mites Injurious to Economic Plants.’ (University of California Press: Berkeley, CA, USA.).
Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
| MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
| Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |
Keifer, H. H. (1938). Eriophyid studies II. Bulletin of the California Department of Agriculture 27, 301–323.
Keifer, H. H. (1939). Eriophyid studies III. Bulletin of the California Department of Agriculture 28, 144–163.
Keifer, H. H. (1942). Eriophyid studies XII. Bulletin of the California Department of Agriculture 31, 117–129.
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
| A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 7463489PubMed |
Krantz, G. W., and Ehrensing, D. T. (1990). Deuterogyny in the skeleton weed mite, Aceria chondrillae (G. Can.) (Acari: Eriophyidae). International Journal of Acarology 16, 129–133.
| Deuterogyny in the skeleton weed mite, Aceria chondrillae (G. Can.) (Acari: Eriophyidae).Crossref | GoogleScholarGoogle Scholar |
Li, H.-S., Xue, X.-F., and Hong, X.-Y. (2014). Homoplastic evolution and host association of Eriophyoidea (Acari, Prostigmata) conflict with the morphological-based taxonomic system. Molecular Phylogenetics and Evolution 78, 185–198.
| Homoplastic evolution and host association of Eriophyoidea (Acari, Prostigmata) conflict with the morphological-based taxonomic system.Crossref | GoogleScholarGoogle Scholar | 24859682PubMed |
Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
| DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 19346325PubMed |
Lindquist, E. E. (1996). External anatomy and notation of structures. In ‘Eriophyoid Mites: Their Biology, Natural Enemies and Control’. (Eds E. E. Lindquist, M. W. Sabelis, and J. Bruin.) pp. 3–31. (Elsevier: Amsterdam, Netherlands.)
Liu, S., Li, J., Guo, K., Qiao, H., Xu, R., Chen, J., Xu, C., and Chen, J. (2016). Seasonal phoresy as an overwintering strategy of a phytophagous mite. Scientific Reports 6, 25483.
| Seasonal phoresy as an overwintering strategy of a phytophagous mite.Crossref | GoogleScholarGoogle Scholar | 27150196PubMed |
Manson, D. C. (1984). ‘Eriophyoidea Except Eriophyinae (Arachnida: Acari).’ Fauna of New Zealand number 4. (Science Information Publishing Centre: Wellington, New Zealand.)
Manson, D. C. M., and Oldfield, G. N. (1996). Life forms, deuterogyny, diapause and sesonal development. In ‘Eriophyoid Mites: Their Biology, Natural Enemies and Control’. (Eds E. E. Lindquist, M. W. Sabelis, and J. Bruin.) pp. 173–183. (Elsevier: Amsterdam, Netherlands.)
Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession number 11705685. (IEEE.)
Navajas, M., and Navia, D. (2010). DNA-based methods for eriophyoid mite studies: review, critical aspects, prospects and challenges. Experimental & Applied Acarology 51, 257–271.
| DNA-based methods for eriophyoid mite studies: review, critical aspects, prospects and challenges.Crossref | GoogleScholarGoogle Scholar |
Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231–259.
| Maximum entropy modeling of species geographic distributions.Crossref | GoogleScholarGoogle Scholar |
Pons, J., Barraclough, T., Gomez-Zurita, J., Cardoso, A., Duran, D., Hazell, S., Kamoun, S., Sumlin, W., and Vogler, A. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595–609.
| Sequence-based species delimitation for the DNA taxonomy of undescribed insects.Crossref | GoogleScholarGoogle Scholar | 16967577PubMed |
Puillandre, N., Lambert, A., Brouillet, S., and Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 1864–1877.
| ABGD, Automatic Barcode Gap Discovery for primary species delimitation.Crossref | GoogleScholarGoogle Scholar | 21883587PubMed |
Rannala, B., and Yang, Z. (2003). Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164, 1645–1656.
| 12930768PubMed |
Ratnasingham, S., and Hebert, P. D. N. (2007). BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes 7, 355–364.
| BOLD: The Barcode of Life Data System (http://www.barcodinglife.org).Crossref | GoogleScholarGoogle Scholar | 18784790PubMed |
Ratnasingham, S., and Hebert, P. D. N. (2013). A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS One 8, e66213.
| A DNA-based registry for all animal species: the Barcode Index Number (BIN) system.Crossref | GoogleScholarGoogle Scholar | 24358363PubMed |
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
| MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |
Shevchenko, V. G., and De-Millo, A. P. (1968). Life-cycle of Trisetacus kirghisorum (Acarina: Tetrapodili) – pest of Juniperus semiglobosa. Rgl. Vestnik LGU 3, 60–67.
Silvestro, D., and Michalak, I. (2012). raxmlGUI: a graphical front-end for RAxML. Organisms, Diversity & Evolution 12, 335–337.
| raxmlGUI: a graphical front-end for RAxML.Crossref | GoogleScholarGoogle Scholar |
Skoracka, A., Kuczynski, L., and Magowski, W. (2002). Morphological variation in different host populations of Abacarus hystrix (Nalepa, 1896) (Acari: Prostigmata: Eriophyoidea). Experimental & Applied Acarology 26, 187–193.
| Morphological variation in different host populations of Abacarus hystrix (Nalepa, 1896) (Acari: Prostigmata: Eriophyoidea).Crossref | GoogleScholarGoogle Scholar |
Skoracka, A., Smith, L., Oldfield, G., Cristofaro, M., and Amrine, J. W. (2010). Host-plant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds. Experimental & Applied Acarology 51, 93–113.
| Host-plant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds.Crossref | GoogleScholarGoogle Scholar |
Skoracka, A., Magalhães, S., Rector, B. G., and Kuczynski, L. (2015). Cryptic speciation in the Acari: a function of species lifestyles or our ability to separate species? Experimental & Applied Acarology 67, 165–182.
| Cryptic speciation in the Acari: a function of species lifestyles or our ability to separate species?Crossref | GoogleScholarGoogle Scholar |
Soika, G., and Kozak, M. (2011). Problems with the taxonomy of Phytoptus tetratrichus Nalepa 1890 (Acari: Eriophyoidea) inhabiting Tilia spp.: analysis based on morphological variation among individuals. Zootaxa 2988, 37–52.
| Problems with the taxonomy of Phytoptus tetratrichus Nalepa 1890 (Acari: Eriophyoidea) inhabiting Tilia spp.: analysis based on morphological variation among individuals.Crossref | GoogleScholarGoogle Scholar |
Soika, G., and Kozak, M. (2013). Eriophyes species (Acari: Eriophyoidea) inhabiting lime trees (Tilia spp.: Tiliaceae) – supplementary description and morphological variability related to host plants and female forms. Zootaxa 3646, 349–385.
| Eriophyes species (Acari: Eriophyoidea) inhabiting lime trees (Tilia spp.: Tiliaceae) – supplementary description and morphological variability related to host plants and female forms.Crossref | GoogleScholarGoogle Scholar | 26213770PubMed |
Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
| RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 16928733PubMed |
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
| MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 24132122PubMed |
Wickham, H. (2016). ‘ggplot2: Elegant Graphics for Data Analysis.’ (Springer-Verlag: New York, NY, USA.)
Xue, X.-F., and Hong, X.-Y. (2005). A new genus and eight new species of Phyllocoptini (Acari: Eriophyidae: Phyllocoptinae) from China. Zootaxa 1039, 1–17.
| A new genus and eight new species of Phyllocoptini (Acari: Eriophyidae: Phyllocoptinae) from China.Crossref | GoogleScholarGoogle Scholar |
Xue, X.-F., Dong, Y., Deng, W., Hong, X.-Y., and Shao, R. (2017). The phylogenetic position of eriophyoid mites (superfamily Eriophyoidea) in Acariformes inferred from the sequences of mitochondrial genomes and nuclear small subunit (18S) rRNA gene. Molecular Phylogenetics and Evolution 109, 271–282.
| The phylogenetic position of eriophyoid mites (superfamily Eriophyoidea) in Acariformes inferred from the sequences of mitochondrial genomes and nuclear small subunit (18S) rRNA gene.Crossref | GoogleScholarGoogle Scholar | 28119107PubMed |
Zhang, Z.-Q. (2011). ‘Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness.’ (Magnolia Press: Auckland, New Zealand.)
Zhang, Z.-Q. (2018). Repositories for mite and tick specimens: acronyms and their nomenclature. Systematic and Applied Acarology 23, 2432–2466.
| Repositories for mite and tick specimens: acronyms and their nomenclature.Crossref | GoogleScholarGoogle Scholar |
Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876.
| A general species delimitation method with applications to phylogenetic placements.Crossref | GoogleScholarGoogle Scholar | 23990417PubMed |