First phylogenetic assessment and taxonomic synopsis of the open-holed trapdoor spider genus Namea (Mygalomorphae: Anamidae): a highly diverse mygalomorph lineage from Australia’s tropical eastern rainforests
Michael G. Rix A B E , Jeremy D. Wilson A C and Mark S. Harvey B DA Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, Qld 4101, Australia.
B Department of Terrestrial Zoology, Western Australian Museum, Welshpool, WA 6106, Australia.
C Division of Arachnology, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Avenida Ángel Gallardo 470 (C1405DJR), Buenos Aires, Argentina.
D School of Animal Biology, The University of Western Australia, Crawley, WA 6009, Australia.
E Corresponding author. Email: michael.rix@qm.qld.gov.au
Invertebrate Systematics 34(7) 679-726 https://doi.org/10.1071/IS20004
Submitted: 31 January 2020 Accepted: 10 April 2020 Published: 8 September 2020
Abstract
The tropical and subtropical rainforests of Australia’s eastern mesic zone have given rise to a complex and highly diverse biota. Numerous old endemic, niche-conserved groups persist in the montane rainforests south of Cooktown, where concepts of serial allopatric speciation resulting from the formation of xeric interzones have largely driven our biogeographic understanding of the region. Among invertebrate taxa, studies on less vagile arachnid lineages now complement extensive research on vertebrate taxa, and phylogenetic studies on mygalomorph spiders in particular are revealing significant insights about the biogeographic history of the Australian continent since the Eocene. One mygalomorph lineage entirely endemic to Australia’s tropical and subtropical eastern rainforests is the open-holed trapdoor spider genus Namea Raven, 1984 (family Anamidae). We explore, for the first time, the phylogenetic diversity and systematics of this group of spiders, with the aims of understanding patterns of rainforest diversity in Namea, of exploring the relative roles of lineage overlap versus in situ speciation in driving predicted high levels of congeneric sympatry, and of broadly reconciling morphology with evolutionary history. Original and legacy sequences were obtained for three mtDNA and four nuDNA markers from 151 specimens, including 82 specimens of Namea. We recovered a monophyletic genus Namea sister to the genus Teyl Main, 1975, and monophyletic species clades corresponding to 30 morphospecies OTUs, including 22 OTUs nested within three main species-complex lineages. Remarkable levels of sympatry for a single genus of mygalomorph spiders were revealed in rainforest habitats, with upland subtropical rainforests in south-eastern Queensland often home to multiple (up to six) congeners of usually disparate phylogenetic affinity living in direct sympatry or close parapatry, likely the result of simultaneous allopatric speciation in already co-occurring lineages, and more recent dispersal in a minority of taxa. In situ speciation, in contrast, appears to have played a relatively minor role in generating sympatric diversity within rainforest ‘islands’. At the population level, changes in the shape and spination of the male first leg relative to evolutionary history reveal subtle but consistent interspecific morphological shifts in the context of otherwise intraspecific variation, and understanding this morphological variance provides a useful framework for future taxonomic monography. Based on the phylogenetic results, we further provide a detailed taxonomic synopsis of the genus Namea, formally diagnosing three main species-complexes (the brisbanensis-complex, the dahmsi-complex and the jimna-complex), re-illustrating males of all 15 described species, and providing images of live spiders and burrows where available. In doing so, we reveal a huge undescribed diversity of Namea species from tropical and subtropical rainforest habitats, and an old endemic fauna that is beginning to shed light on more complex patterns of rainforest biogeography.
Keywords: Australasia, historical biogeography, Nemesiidae, taxonomy, Wet Tropics.
References
Arnedo, M. A., and Ferrández, M.-A. (2007). Mitochondrial markers reveal deep population subdivision in the European protected spider Macrothele calpeiana (Walckenaer, 1805) (Araneae, Hexathelidae). Conservation Genetics 8, 1147–1162.| Mitochondrial markers reveal deep population subdivision in the European protected spider Macrothele calpeiana (Walckenaer, 1805) (Araneae, Hexathelidae).Crossref | GoogleScholarGoogle Scholar |
Baker, C. H., Graham, G. C., Scott, K. D., Cameron, S. L., Yeates, D. K., and Merritt, D. J. (2008). Distribution and phylogenetic relationships of Australian glow-worms Arachnocampa (Diptera, Keroplatidae). Molecular Phylogenetics and Evolution 48, 506–514.
| Distribution and phylogenetic relationships of Australian glow-worms Arachnocampa (Diptera, Keroplatidae).Crossref | GoogleScholarGoogle Scholar | 18583158PubMed |
Bell, R. C., Parra, J. L., Tonione, M., Hoskin, C. J., Mackenzie, J. B., Williams, S. E., and Moritz, C. (2010). Patterns of persistence and isolation indicate resilience to climate change in montane rainforest lizards. Molecular Ecology 19, 2531–2544.
| Patterns of persistence and isolation indicate resilience to climate change in montane rainforest lizards.Crossref | GoogleScholarGoogle Scholar | 20497322PubMed |
Bond, J. E., and Godwin, R. L. (2013). Taxonomic revision of the trapdoor spider genus Eucteniza Ausserer (Araneae, Mygalomorphae, Euctenizidae). ZooKeys 356, 31–67.
| Taxonomic revision of the trapdoor spider genus Eucteniza Ausserer (Araneae, Mygalomorphae, Euctenizidae).Crossref | GoogleScholarGoogle Scholar |
Bond, J. E., and Stockman, A. K. (2008). An integrative method for delimiting cohesion species: finding the population–species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring. Systematic Biology 57, 628–646.
| An integrative method for delimiting cohesion species: finding the population–species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring.Crossref | GoogleScholarGoogle Scholar | 18686196PubMed |
Bond, J. E., Beamer, D. A., Lamb, T., and Hedin, M. (2006). Combining genetic and geospatial analyses to infer population extinction in mygalomorph spiders endemic to the Los Angeles region. Animal Conservation 9, 145–157.
| Combining genetic and geospatial analyses to infer population extinction in mygalomorph spiders endemic to the Los Angeles region.Crossref | GoogleScholarGoogle Scholar |
Bond, J. E., Hendrixson, B. E., Hamilton, C. A., and Hedin, M. (2012). A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology. PLoS One 7, e38753.
| A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology.Crossref | GoogleScholarGoogle Scholar | 22723885PubMed |
Bragg, J. G., Potter, S., Afonso Silva, A. C., Hoskin, C. J., Bai, B. Y. H., and Moritz, C. (2018). Phylogenomics of a rapid radiation: the Australian rainbow skinks. BMC Evolutionary Biology 18, 15.
| Phylogenomics of a rapid radiation: the Australian rainbow skinks.Crossref | GoogleScholarGoogle Scholar | 29402211PubMed |
Bryant, L. M., and Krosch, M. N. (2016). Lines in the land: a review of evidence for eastern Australia’s major biogeographical barriers to closed forest taxa. Biological Journal of the Linnean Society. Linnean Society of London 119, 238–264.
| Lines in the land: a review of evidence for eastern Australia’s major biogeographical barriers to closed forest taxa.Crossref | GoogleScholarGoogle Scholar |
Byrne, M., Yeates, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A. J., Cooper, S., Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., and Wyrwoll, K.-H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
| Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 18761619PubMed |
Byrne, M., Steane, D. A., Joseph, L., Yeates, D. K., Jordan, G. J., Crayn, D., Aplin, K., Cantrill, D. J., Cook, L. G., Crisp, M. D., Keogh, J. S., Melville, J., Moritz, C., Porch, N., Sniderman, J. M. K., Sunnucks, P., and Weston, P. H. (2011). Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography 38, 1635–1656.
| Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota.Crossref | GoogleScholarGoogle Scholar |
Castalanelli, M. A., Teale, R., Rix, M. G., Kennington, W. J., and Harvey, M. S. (2014). Barcoding of mygalomorph spiders (Araneae: Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota. Invertebrate Systematics 28, 375–385.
| Barcoding of mygalomorph spiders (Araneae: Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota.Crossref | GoogleScholarGoogle Scholar |
Castalanelli, M. A., Huey, J. A., Hillyer, M. J., and Harvey, M. S. (2017). Molecular and morphological evidence for a new genus of small trapdoor spiders from arid Western Australia (Araneae: Mygalomorphae: Nemesiidae: Anaminae). Invertebrate Systematics 31, 492–505.
| Molecular and morphological evidence for a new genus of small trapdoor spiders from arid Western Australia (Araneae: Mygalomorphae: Nemesiidae: Anaminae).Crossref | GoogleScholarGoogle Scholar |
Cooper, S. J. B., Harvey, M. S., Saint, K. M., and Main, B. Y. (2011). Deep phylogeographic structuring of populations of the trapdoor spider Moggridgea tingle (Migidae) from southwestern Australia: evidence for long-term refugia within refugia. Molecular Ecology 20, 3219–3236.
| Deep phylogeographic structuring of populations of the trapdoor spider Moggridgea tingle (Migidae) from southwestern Australia: evidence for long-term refugia within refugia.Crossref | GoogleScholarGoogle Scholar |
de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56, 879–886.
| Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar | 18027281PubMed |
Ferretti, N. E., Pompozzi, G., Copperi, S., González, A., and Pérez-Miles, F. (2013). Sexual behavior of mygalomorph spiders: when simplicity becomes complex; an update of the last 21 years. Arachnology 16, 85–93.
| Sexual behavior of mygalomorph spiders: when simplicity becomes complex; an update of the last 21 years.Crossref | GoogleScholarGoogle Scholar |
Ferretti, N. E., Soresi, D. S., González, A., and Arnedo, M. (2019). An integrative approach unveils speciation within the threatened spider Calathotarsus simoni (Araneae: Mygalomorphae: Migidae). Systematics and Biodiversity 17, 439–457.
| An integrative approach unveils speciation within the threatened spider Calathotarsus simoni (Araneae: Mygalomorphae: Migidae).Crossref | GoogleScholarGoogle Scholar |
Foley, S., Lüddecke, T., Cheng, D.-Q., Krehenwinkel, H., Künzel, S., Longhorn, S. J., Wendt, I., von Wirth, V., Tänzler, R., Vences, M., and Piel, W. H. (2019). Tarantula phylogenomics: a robust phylogeny of deep theraphosid clades inferred from transcriptome data sheds light on the prickly issue of urticating setae evolution. Molecular Phylogenetics and Evolution 140, 106573.
| Tarantula phylogenomics: a robust phylogeny of deep theraphosid clades inferred from transcriptome data sheds light on the prickly issue of urticating setae evolution.Crossref | GoogleScholarGoogle Scholar | 31374259PubMed |
Hamilton, C. A., Formanowicz, D. R., and Bond, J. E. (2011). Species delimitation and phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): cryptic diversity in North American tarantulas. PLoS One 6, e26207.
| Species delimitation and phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): cryptic diversity in North American tarantulas.Crossref | GoogleScholarGoogle Scholar | 22022570PubMed |
Harrison, S. E., Rix, M. G., Harvey, M. S., and Austin, A. D. (2016). An African mygalomorph lineage in temperate Australia: the trapdoor spider genus Moggridgea (Araneae: Migidae) on Kangaroo Island, South Australia. Austral Entomology 55, 208–216.
| An African mygalomorph lineage in temperate Australia: the trapdoor spider genus Moggridgea (Araneae: Migidae) on Kangaroo Island, South Australia.Crossref | GoogleScholarGoogle Scholar |
Harrison, S. E., Harvey, M. S., Cooper, S. J. B., Austin, A. D., and Rix, M. G. (2017). Across the Indian Ocean: a remarkable example of trans-oceanic dispersal in an austral mygalomorph spider. PLoS One 12, e0180139.
| Across the Indian Ocean: a remarkable example of trans-oceanic dispersal in an austral mygalomorph spider.Crossref | GoogleScholarGoogle Scholar | 28767648PubMed |
Harvey, M. S., Main, B. Y., Rix, M. G., and Cooper, S. J. B. (2015). Refugia within refugia: in situ speciation and conservation of threatened Bertmainius (Araneae: Migidae), a new genus of relictual trapdoor spiders endemic to the mesic zone of south-western Australia. Invertebrate Systematics 29, 511–553.
| Refugia within refugia: in situ speciation and conservation of threatened Bertmainius (Araneae: Migidae), a new genus of relictual trapdoor spiders endemic to the mesic zone of south-western Australia.Crossref | GoogleScholarGoogle Scholar |
Harvey, M. S., Rix, M. G., Harms, D., Giribet, G., Vink, C. J., and Walter, D. E. (2017). The biogeography of Australasian arachnids. In ‘Handbook of Australasian Biogeography’. (Ed. M. C. Ebach.) pp. 241–267. (CRC Press: Boca Raton, FL, USA.)
Harvey, M. S., Hillyer, M. J., Main, B. Y., Moulds, T. A., Raven, R. J., Rix, M. G., Vink, C. J., and Huey, J. A. (2018). Phylogenetic relationships of the Australasian open-holed trapdoor spiders (Araneae: Mygalomorphae: Nemesiidae: Anaminae): multi-locus molecular analyses resolve the generic classification of a highly diverse fauna. Zoological Journal of the Linnean Society 184, 407–452.
| Phylogenetic relationships of the Australasian open-holed trapdoor spiders (Araneae: Mygalomorphae: Nemesiidae: Anaminae): multi-locus molecular analyses resolve the generic classification of a highly diverse fauna.Crossref | GoogleScholarGoogle Scholar |
Hedin, M., Starrett, J., and Hayashi, C. (2013). Crossing the uncrossable: novel trans-valley biogeographic patterns revealed in the genetic history of low-dispersal mygalomorph spiders (Antrodiaetidae, Antrodiaetus) from California. Molecular Ecology 22, 508–526.
| Crossing the uncrossable: novel trans-valley biogeographic patterns revealed in the genetic history of low-dispersal mygalomorph spiders (Antrodiaetidae, Antrodiaetus) from California.Crossref | GoogleScholarGoogle Scholar | 23205500PubMed |
Hedin, M., Carlson, D., and Coyle, F. (2015). Sky island diversification meets the multispecies coalescent – divergence in the spruce-fir moss spider (Microhexura montivaga, Araneae, Mygalomorphae) on the highest peaks of southern Appalachia. Molecular Ecology 24, 3467–3484.
| Sky island diversification meets the multispecies coalescent – divergence in the spruce-fir moss spider (Microhexura montivaga, Araneae, Mygalomorphae) on the highest peaks of southern Appalachia.Crossref | GoogleScholarGoogle Scholar | 26011071PubMed |
Hedin, M., Derkarabetian, S., Ramírez, M., Vink, C., and Bond, J. E. (2018). Phylogenomic reclassification of the world’s most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution. Scientific Reports 8, 1636.
| Phylogenomic reclassification of the world’s most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution.Crossref | GoogleScholarGoogle Scholar | 29374214PubMed |
Hedin, M., Derkarabetian, S., Alfaro, A., Ramírez, M., and Bond, J. (2019). Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci. PeerJ 7, e6864.
| Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci.Crossref | GoogleScholarGoogle Scholar | 31110925PubMed |
Hendrixson, B. E., and Bond, J. E. (2005). Testing species boundaries in the Antrodiaetus unicolor complex (Araneae: Mygalomorphae: Antrodiaetidae): ‘paraphyly’ and cryptic diversity. Molecular Phylogenetics and Evolution 36, 405–416.
| Testing species boundaries in the Antrodiaetus unicolor complex (Araneae: Mygalomorphae: Antrodiaetidae): ‘paraphyly’ and cryptic diversity.Crossref | GoogleScholarGoogle Scholar | 15955518PubMed |
Hendrixson, B. E., and Bond, J. E. (2009). Evaluating the efficacy of continuous quantitative characters for reconstructing the phylogeny of a morphologically homogeneous spider taxon (Araneae, Mygalomorphae, Antrodiaetidae, Antrodiaetus). Molecular Phylogenetics and Evolution 53, 300–313.
| Evaluating the efficacy of continuous quantitative characters for reconstructing the phylogeny of a morphologically homogeneous spider taxon (Araneae, Mygalomorphae, Antrodiaetidae, Antrodiaetus).Crossref | GoogleScholarGoogle Scholar | 19523525PubMed |
Hendrixson, B. E., Guice, A. V., and Bond, J. E. (2015). Integrative species delimitation and conservation of tarantulas (Araneae, Mygalomorphae, Theraphosidae) from a North American biodiversity hotspot. Insect Conservation and Diversity 8, 120–131.
| Integrative species delimitation and conservation of tarantulas (Araneae, Mygalomorphae, Theraphosidae) from a North American biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |
Huber, B. A. (2005). Sexual selection research on spiders: progress and biases. Biological Reviews of the Cambridge Philosophical Society 80, 363–385.
| Sexual selection research on spiders: progress and biases.Crossref | GoogleScholarGoogle Scholar | 16094804PubMed |
Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
| MRBAYES: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 11524383PubMed |
Huey, J. A., Hillyer, M. J., and Harvey, M. S. (2019a). Phylogenetic relationships and biogeographic history of the Australian trapdoor spider genus Conothele (Araneae: Mygalomorphae: Halonoproctidae): diversification into arid habitats in an otherwise tropical radiation. Invertebrate Systematics 33, 628–643.
| Phylogenetic relationships and biogeographic history of the Australian trapdoor spider genus Conothele (Araneae: Mygalomorphae: Halonoproctidae): diversification into arid habitats in an otherwise tropical radiation.Crossref | GoogleScholarGoogle Scholar |
Huey, J. A., Rix, M. G., Wilson, J. D., Hillyer, M. J., and Harvey, M. S. (2019b). Open-holed trapdoor spiders of the genus Teyl (Mygalomorphae: Nemesiidae: Anamidae) from Western Australia’s Pilbara bioregion: a new species and expanded phylogenetic assessment. Zootaxa 4674, 349–362.
| Open-holed trapdoor spiders of the genus Teyl (Mygalomorphae: Nemesiidae: Anamidae) from Western Australia’s Pilbara bioregion: a new species and expanded phylogenetic assessment.Crossref | GoogleScholarGoogle Scholar |
Katoh, K., Misawa, K., Kuma, K.-I., and Mityata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
| MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 12136088PubMed |
Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
| PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 22319168PubMed |
Leavitt, D. H., Starrett, J., Westphal, M. F., and Hedin, M. (2015). Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae). Molecular Phylogenetics and Evolution 91, 56–67.
| Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae).Crossref | GoogleScholarGoogle Scholar | 26025426PubMed |
Main, B. Y. (1985). Further studies on Australian Diplurinae: a review of the genera of the Teylini (Araneae: Mygalomorphae: Dipluridae). Australian Journal of Zoology 33, 743–759.
| Further studies on Australian Diplurinae: a review of the genera of the Teylini (Araneae: Mygalomorphae: Dipluridae).Crossref | GoogleScholarGoogle Scholar |
Main, B. Y. (1987). Persistence of invertebrates in small areas: case studies of trapdoor spiders in Western Australia. In ‘Nature Conservation: The Role of Remnants of Native Vegetation’. (Eds D. A. Saunders, G. W. Arnold, A. A. Burbidge, and A. J. M. Hopkins.) pp. 29–39. (Surrey Beatty and Sons in association with CSIRO and CALM: Sydney, NSW, Australia.)
McLoughlin, S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany 49, 271–300.
| The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism.Crossref | GoogleScholarGoogle Scholar |
Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number 11705685, pp. 1–8. (IEEE.)
Mora, E., Paspati, A., Decae, A. E., and Arnedo, M. A. (2017). Rafting spiders or drifting islands? Origins and diversification of the endemic trap-door spiders from the Balearic Islands, Western Mediterranean. Journal of Biogeography 44, 924–936.
| Rafting spiders or drifting islands? Origins and diversification of the endemic trap-door spiders from the Balearic Islands, Western Mediterranean.Crossref | GoogleScholarGoogle Scholar |
Moreau, C. S., Hugall, A. F., McDonald, K. R., Jamieson, B. G. N., and Moritz, C. (2015). An ancient divide in a contiguous rainforest: endemic earthworms in the Australian Wet Tropics. PLoS One 10, e0136943.
| An ancient divide in a contiguous rainforest: endemic earthworms in the Australian Wet Tropics.Crossref | GoogleScholarGoogle Scholar | 26366862PubMed |
Moritz, C., Patton, J. L., Schneider, C. J., and Smith, T. B. (2000). Diversification of rainforest faunas: an integrated molecular approach. Annual Review of Ecology and Systematics 31, 533–563.
| Diversification of rainforest faunas: an integrated molecular approach.Crossref | GoogleScholarGoogle Scholar |
Nicholls, J. A., and Austin, J. J. (2005). Phylogeography of an east Australian wet-forest bird, the satin bowerbird (Ptilonorhynchus violaceus), derived from mtDNA, and its relationship to morphology. Molecular Ecology 14, 1485–1496.
| Phylogeography of an east Australian wet-forest bird, the satin bowerbird (Ptilonorhynchus violaceus), derived from mtDNA, and its relationship to morphology.Crossref | GoogleScholarGoogle Scholar | 15813786PubMed |
Oberski, J. T., Sharma, P. P., Jay, K. R., Coblens, M. J., Lemon, K. A., Johnson, J. E., and Boyer, S. L. (2018). A dated molecular phylogeny of mite harvestmen (Arachnida: Opiliones: Cyphophthalmi) elucidates ancient diversification dynamics in the Australian Wet Tropics. Molecular Phylogenetics and Evolution 127, 813–822.
| A dated molecular phylogeny of mite harvestmen (Arachnida: Opiliones: Cyphophthalmi) elucidates ancient diversification dynamics in the Australian Wet Tropics.Crossref | GoogleScholarGoogle Scholar | 29935300PubMed |
Opatova, V., and Arnedo, M. A. (2014a). From Gondwana to Europe: inferring the origins of Mediterranean Macrothele spiders (Araneae: Hexathelidae) and the limits of the family Hexathelidae. Invertebrate Systematics 28, 361–374.
| From Gondwana to Europe: inferring the origins of Mediterranean Macrothele spiders (Araneae: Hexathelidae) and the limits of the family Hexathelidae.Crossref | GoogleScholarGoogle Scholar |
Opatova, V., and Arnedo, M. A. (2014b). Spiders on a hot volcanic roof: colonization pathways and phylogeography of the Canary Islands endemic trap-door spider Titanidiops canariensis (Araneae, Idiopidae). PLoS One 9, e115078.
| Spiders on a hot volcanic roof: colonization pathways and phylogeography of the Canary Islands endemic trap-door spider Titanidiops canariensis (Araneae, Idiopidae).Crossref | GoogleScholarGoogle Scholar | 25494329PubMed |
Opatova, V., Bond, J. E., and Arnedo, M. A. (2013). Ancient origins of the Mediterranean trap-door spiders of the family Ctenizidae (Araneae, Mygalomorphae). Molecular Phylogenetics and Evolution 69, 1135–1145.
| Ancient origins of the Mediterranean trap-door spiders of the family Ctenizidae (Araneae, Mygalomorphae).Crossref | GoogleScholarGoogle Scholar | 23954655PubMed |
Opatova, V., Hamilton, C. A., Hedin, M., Montes de Oca, L., Král, J., and Bond, J. E. (2020). Phylogenetics systematics and evolution of the spider infraorder Mygalomorphae using genomic scale data. Systematic Biology 69, 671–707.
| Phylogenetics systematics and evolution of the spider infraorder Mygalomorphae using genomic scale data.Crossref | GoogleScholarGoogle Scholar | 31841157PubMed |
Ortiz, D., Francke, O., and Bond, J. (2018). A tangle of forms and phylogeny: extensive morphological homoplasy and molecular clock heterogeneity in Bonnetina and related tarantulas. Molecular Phylogenetics and Evolution 127, 55–73.
| A tangle of forms and phylogeny: extensive morphological homoplasy and molecular clock heterogeneity in Bonnetina and related tarantulas.Crossref | GoogleScholarGoogle Scholar | 29778724PubMed |
Pedersen, A. A., and Loeschcke, V. (2001). Conservation genetics of peripheral populations of the mygalomorph spider Atypus affinis (Atypidae) in northern Europe. Molecular Ecology 10, 1133–1142.
| Conservation genetics of peripheral populations of the mygalomorph spider Atypus affinis (Atypidae) in northern Europe.Crossref | GoogleScholarGoogle Scholar | 11380872PubMed |
Ponniah, M., and Hughes, J. M. (2004). The evolution of Queensland spiny mountain crayfish of the genus Euastacus. I. Testing vicariance and dispersal with interspecific mitochondrial DNA. Evolution 58, 1073–1085.
| The evolution of Queensland spiny mountain crayfish of the genus Euastacus. I. Testing vicariance and dispersal with interspecific mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 15212388PubMed |
Ponniah, M., and Hughes, J. M. (2006). The evolution of Queensland spiny mountain crayfish of the genus Euastacus. II. Investigating simultaneous vicariance with intraspecific genetic data. Marine and Freshwater Research 57, 349–362.
| The evolution of Queensland spiny mountain crayfish of the genus Euastacus. II. Investigating simultaneous vicariance with intraspecific genetic data.Crossref | GoogleScholarGoogle Scholar |
Raven, R. J. (1984). A new diplurid genus from eastern Australia and a related Aname species (Diplurinae: Dipluridae: Araneae). Australian Journal of Zoology Supplementary Series 32, 1–51.
| A new diplurid genus from eastern Australia and a related Aname species (Diplurinae: Dipluridae: Araneae).Crossref | GoogleScholarGoogle Scholar |
Raven, R. J. (1985). The spider infraorder Mygalomorphae (Araneae): cladistics and systematics. Bulletin of the American Museum of Natural History 182, 1–180.
Rix, M. G., and Harvey, M. S. (2012). Phylogeny and historical biogeography of ancient assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: evidence for Miocene speciation within Tertiary refugia. Molecular Phylogenetics and Evolution 62, 375–396.
| Phylogeny and historical biogeography of ancient assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: evidence for Miocene speciation within Tertiary refugia.Crossref | GoogleScholarGoogle Scholar | 22040763PubMed |
Rix, M. G., Bain, K., Main, B. Y., Raven, R. J., Austin, A. D., Cooper, S. J. B., and Harvey, M. S. (2017a). Systematics of the spiny trapdoor spiders of the genus Cataxia (Mygalomorphae: Idiopidae) from south-western Australia: documenting a threatened fauna in a sky-island landscape. The Journal of Arachnology 45, 395–423.
| Systematics of the spiny trapdoor spiders of the genus Cataxia (Mygalomorphae: Idiopidae) from south-western Australia: documenting a threatened fauna in a sky-island landscape.Crossref | GoogleScholarGoogle Scholar |
Rix, M. G., Cooper, S. J. B., Meusemann, K., Klopfstein, S., Harrison, S. E., Harvey, M. S., and Austin, A. D. (2017b). Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae). Molecular Phylogenetics and Evolution 109, 302–320.
| Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae).Crossref | GoogleScholarGoogle Scholar | 28126515PubMed |
Rix, M. G., Huey, J. A., Main, B. Y., Waldock, J. M., Harrison, S. E., Comer, S., Austin, A. D., and Harvey, M. S. (2017c). Where have all the spiders gone? The decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia. Austral Entomology 56, 14–22.
| Where have all the spiders gone? The decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia.Crossref | GoogleScholarGoogle Scholar |
Rix, M. G., Huey, J. A., Cooper, S. J. B., Austin, A. D., and Harvey, M. S. (2018). Conservation systematics of the shield-backed trapdoor spiders of the nigrum-group (Mygalomorphae: Idiopidae: Idiosoma): integrative taxonomy reveals a diverse and threatened fauna from south-western Australia. ZooKeys 756, 1–121.
| Conservation systematics of the shield-backed trapdoor spiders of the nigrum-group (Mygalomorphae: Idiopidae: Idiosoma): integrative taxonomy reveals a diverse and threatened fauna from south-western Australia.Crossref | GoogleScholarGoogle Scholar |
Rix, M. G., Wilson, J. D., Rix, A. G., Wokcieszek, A. M., Huey, J. A., and Harvey, M. S. (2019). Population demography and biology of a new species of giant spiny trapdoor spider (Araneae: Idiopidae: Euoplos) from inland Queensland: developing a ‘slow science’ study system to address a conservation crisis. Austral Entomology 58, 282–297.
| Population demography and biology of a new species of giant spiny trapdoor spider (Araneae: Idiopidae: Euoplos) from inland Queensland: developing a ‘slow science’ study system to address a conservation crisis.Crossref | GoogleScholarGoogle Scholar |
Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
| MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 12912839PubMed |
Rosauer, D. F., Catullo, R. A., WanDerWal, J., Moussalli, A., and Moritz, C. (2015). Lineage range estimation method reveals fine-scale endemism linked to Pleistocene stability in Australian rainforest herpetofauna. PLoS One 10, e0126274.
| Lineage range estimation method reveals fine-scale endemism linked to Pleistocene stability in Australian rainforest herpetofauna.Crossref | GoogleScholarGoogle Scholar | 26020936PubMed |
Satler, J. D., Starrett, J., Hayashi, C. Y., and Hedin, M. (2011). Inferring species trees from gene trees in a radiation of California trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus). PLoS One 6, e25355.
| Inferring species trees from gene trees in a radiation of California trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus).Crossref | GoogleScholarGoogle Scholar | 21966507PubMed |
Satler, J. D., Carstens, B. C., and Hedin, M. (2013). Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, Aliatypus). Systematic Biology 62, 805–823.
| Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, Aliatypus).Crossref | GoogleScholarGoogle Scholar | 23771888PubMed |
Sota, T., Takami, Y., Monteith, G. B., and Moore, B. P. (2005). Phylogeny and character evolution of endemic Australian carabid beetles of the genus Pamborus based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution 36, 391–404.
| Phylogeny and character evolution of endemic Australian carabid beetles of the genus Pamborus based on mitochondrial and nuclear gene sequences.Crossref | GoogleScholarGoogle Scholar | 15955517PubMed |
Starrett, J., Hayashi, C. Y., Derkarabetian, S., and Hedin, M. (2018). Cryptic elevational zonation in trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus janus complex) from the California southern Sierra Nevada. Molecular Phylogenetics and Evolution 118, 403–413.
| Cryptic elevational zonation in trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus janus complex) from the California southern Sierra Nevada.Crossref | GoogleScholarGoogle Scholar | 28919504PubMed |
Vijayakumar, S. P., Menezes, R. C., Jayarajan, A., and Shanker, K. (2016). Glaciations, gradients, and geography: multiple drivers of diversification of bush frogs in the Western Ghats Escarpment. Proceedings of the Royal Society of London – B. Biological Sciences 283, 20161011.
| Glaciations, gradients, and geography: multiple drivers of diversification of bush frogs in the Western Ghats Escarpment.Crossref | GoogleScholarGoogle Scholar |
Wilson, J. D., Hughes, J. M., Raven, R. J., Rix, M. G., and Schmidt, D. J. (2018). Spiny trapdoor spiders (Euoplos) of eastern Australia: broadly sympatric clades are differentiated by burrow architecture and male morphology. Molecular Phylogenetics and Evolution 122, 157–165.
| Spiny trapdoor spiders (Euoplos) of eastern Australia: broadly sympatric clades are differentiated by burrow architecture and male morphology.Crossref | GoogleScholarGoogle Scholar | 29428510PubMed |
Wilson, J. D., Rix, M. G., Raven, R. J., Schmidt, D. J., and Hughes, J. M. (2019). Systematics of the palisade trapdoor spiders (Euoplos) of south-eastern Queensland (Araneae: Mygalomorphae: Idiopidae): four new species distinguished by their burrow entrance architecture. Invertebrate Systematics 33, 253–276.
| Systematics of the palisade trapdoor spiders (Euoplos) of south-eastern Queensland (Araneae: Mygalomorphae: Idiopidae): four new species distinguished by their burrow entrance architecture.Crossref | GoogleScholarGoogle Scholar |
Yeates, D. K., Bouchard, P., and Monteith, G. B. (2002). Patterns and levels of endemism in the Australian Wet Tropics rainforest: evidence from flightless insects. Invertebrate Systematics 16, 605–619.
| Patterns and levels of endemism in the Australian Wet Tropics rainforest: evidence from flightless insects.Crossref | GoogleScholarGoogle Scholar |