Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Phylogeny, biogeography and systematics of Pacific vent, methane seep, and whale-fall Parougia (Dorvilleidae : Annelida), with eight new species

Nicole K. Yen https://orcid.org/0000-0003-0407-0973 A and Greg W. Rouse https://orcid.org/0000-0001-9036-9263 A B
+ Author Affiliations
- Author Affiliations

A Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.

B Corresponding author. Email: grouse@ucsd.edu

Invertebrate Systematics 34(2) 200-233 https://doi.org/10.1071/IS19042
Submitted: 26 July 2019  Accepted: 16 October 2019   Published: 31 March 2020

Abstract

Dorvilleidae is a diverse group of annelids found in many marine environments and also commonly associated with chemosynthetic habitats. One dorvilleid genus, Parougia, currently has 11 described species, of which two are found at vents or seeps: Parougia wolfi and Parougia oregonensis. Eight new Parougia species are recognised and described in this study from collections in the Pacific Ocean, all from whale-falls, hydrothermal vents, or methane seeps at ~600-m depth or greater. The specimens were studied using morphology and phylogenetic analyses of DNA sequences from mitochondrial (cytochrome c oxidase subunit I, 16S rRNA, and cytochrome b) and nuclear (18S rRNA and histone 3) genes. Six sympatric Parougia spp. were found at Hydrate Ridge, Oregon, while three of the Parougia species occurred at different types of chemosynthetic habitats. Two new species were found over wide geographical and bathymetric ranges. Another dorvilleid genus, Ophryotrocha, has previously been highlighted as diversifying in the deep-sea environment. Our results document the hitherto unknown diversity of another dorvilleid genus, Parougia, at various chemosynthetic environments.

http://zoobank.org/urn:lsid:zoobank.org:pub:EC7EBBEA-2FB5-43D6-BE53-1A468B541A5C

Additional keywords: chemosynthetic environments, COI, deep sea, molecular, polychaete.


References

Åkesson, B. (1974). Reproduction and larval morphology of five Ophryotrocha species (Polychaeta, Dorvilleidae). Zoologica Scripta 2, 145–155.
Reproduction and larval morphology of five Ophryotrocha species (Polychaeta, Dorvilleidae).Crossref | GoogleScholarGoogle Scholar |

Åkesson, B., and Rice, S. A. (1992). Two new Dorvillea species (Polychaeta, Dorvilleidae) with obligate asexual reproduction. Zoologica Scripta 21, 351–362.
Two new Dorvillea species (Polychaeta, Dorvilleidae) with obligate asexual reproduction.Crossref | GoogleScholarGoogle Scholar |

Bernardino, A. F., Levin, L. A., Thurber, A. R., and Smith, C. R. (2012). Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. PLoS One 7, e33515.
Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls.Crossref | GoogleScholarGoogle Scholar | 22496753PubMed |

Blake, J. A. (1985). Polychaeta from the vicinity of deep-sea geothermal vents in the eastern Pacific. I: Euphrosinidae, Phyllodocidae, Hesionidae, Nereididae, Glyceridae, Dorvilleidae, Orbiniidae, and Maldanidae. Bulletin of the Biological Society of Washington 6, 67–101.

Blake, J. A., and Hilbig, B. (1990). Polychaeta from the vicinity of deep-sea hydrothermal vents in the eastern Pacific. II. New species and records from the Juan de Fuca and Explorer Ridge systems. Pacific Science 44, 219–253.

Bonnier, J. (1893). Notes sur les annélides du Boulonnais. I. L’Ophryotrocha puerilis (Claparède et Metschnikoff) et son appareil maxillaire. Bulletin Biologique de la France et de la Belgique 25, 198–226.

Boore, J. L., and Brown, W. M. (2000). Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Molecular Biology and Evolution 17, 87–106.
Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa.Crossref | GoogleScholarGoogle Scholar | 10666709PubMed |

Borda, E., Kudenov, J. D., Chevaldonné, P., Desbruyères, D., Blake, J. A., Fabri, M.-C., Hourdez, S., Shank, T. M., Wilson, N. G., Pleijel, F., Schulze, A., and Rouse, G. W. (2013). Cryptic species of Archinome (Annelida: Amphinomidae) from hydrothermal vents and cold seeps. Proceedings of the Royal Society of London – B. Biological Sciences 280, 20131876.
Cryptic species of Archinome (Annelida: Amphinomidae) from hydrothermal vents and cold seeps.Crossref | GoogleScholarGoogle Scholar |

Colgan, D. J., Ponder, W. F., and Eggler, P. E. (2000). Gastropod evolutionary rates and phylogenetic relationships assessed using partial 28S rDNA and histone H3 sequences. Zoologica Scripta 29, 29–63.
Gastropod evolutionary rates and phylogenetic relationships assessed using partial 28S rDNA and histone H3 sequences.Crossref | GoogleScholarGoogle Scholar |

Dahlgren, T. G., Akesson, B., Schander, C., Halanych, K. M., and Sundberg, P. (2001). Molecular phylogeny of the model annelid Ophryotrocha. The Biological Bulletin 201, 193–203.
Molecular phylogeny of the model annelid Ophryotrocha.Crossref | GoogleScholarGoogle Scholar | 11687391PubMed |

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 22847109PubMed |

De Baets, K., Antonelli, A., and Donoghue, P. C. J. (2016). Tectonic blocks and molecular clocks. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 371, 20160098.
Tectonic blocks and molecular clocks.Crossref | GoogleScholarGoogle Scholar | 27325840PubMed |

Delle Chiaje, S. (1828). ‘Memorie sulla Storia e Notomia degli Animali senza Vertebre del Regno di Napoli.’ (Societa Tipografica: Napoli.)

Eibye-Jacobsen, D., and Kristensen, R. M. (1994). A new genus and species of Dorvilleidae (Annelida, Polychaeta) from Bermuda, with a phylogenetic analysis of Dorvilleidae, Iphitimidae and Dinophilidae. Zoologica Scripta 23, 107–131.
A new genus and species of Dorvilleidae (Annelida, Polychaeta) from Bermuda, with a phylogenetic analysis of Dorvilleidae, Iphitimidae and Dinophilidae.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |

Giribet, G., and Ribera, C. (2000). A review of Arthropod phylogeny: new data based on ribosomal DNA sequences and direct character optimization. Cladistics 16, 204–231.
A review of Arthropod phylogeny: new data based on ribosomal DNA sequences and direct character optimization.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Carranza, S., Baguna, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada plus Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
First molecular evidence for the existence of a Tardigrada plus Arthropoda clade.Crossref | GoogleScholarGoogle Scholar | 8583909PubMed |

Glover, A. G., Goetze, E., Dahlgren, T. G., and Smith, C. R. (2005). Morphology, reproductive biology and genetic structure of the whale-fall and hydrothermal vent specialist, Bathykurila guaymasensis Pettibone, 1989 (Annelida: Polynoidae). Marine Ecology (Berlin) 26, 223–234.
Morphology, reproductive biology and genetic structure of the whale-fall and hydrothermal vent specialist, Bathykurila guaymasensis Pettibone, 1989 (Annelida: Polynoidae).Crossref | GoogleScholarGoogle Scholar |

Goffredi, S. K., Paull, C. K., Fulton-Bennett, K., Hurtado, L. A., and Vrijenhoek, R. C. (2004). Unusual benthic fauna associated with a whale fall in Monterey Canyon, California. Deep-sea Research – I. Oceanographic Research Papers 51, 1295–1306.
Unusual benthic fauna associated with a whale fall in Monterey Canyon, California.Crossref | GoogleScholarGoogle Scholar |

Grube, A. E. (1855). Beschreibung neuer oder wenig bekannter Anneliden. Archiv für Naturgeschichte 21, 81–136.
Beschreibung neuer oder wenig bekannter Anneliden.Crossref | GoogleScholarGoogle Scholar |

Hartman, O. (1953). Non-pelagic Polychaeta of the Swedish Antarctic Expedition 1901–1903. Further Zoological Results of the Swedish Antarctic Expedition 1901–1903 under Direction of Otto Nordenskjöld 4, 1–83.

Heggoy, K. K., Schander, C., and Åkesson, B. (2007). The phylogeny of the annelid genus Ophryotrocha (Dorvilleidae). Marine Biology Research 3, 412–420.
The phylogeny of the annelid genus Ophryotrocha (Dorvilleidae).Crossref | GoogleScholarGoogle Scholar |

Hilbig, B., and Fiege, D. (2001). A new species of Dorvilleidae (Annelida: Polychaeta) from a cold seep site in the northeast Pacific. Proceedings of the Biological Society of Washington 114, 396–402.

Jang, S., Park, E., Lee, W., Johnson, S. B., Vrijenhoek, R. C., and Won, Y. (2016). Population subdivision of hydrothermal vent polychaete Alvinella pompejana across equatorial and Easter Microplate boundaries. BMC Evolutionary Biology 16, 235.
Population subdivision of hydrothermal vent polychaete Alvinella pompejana across equatorial and Easter Microplate boundaries.Crossref | GoogleScholarGoogle Scholar | 27793079PubMed |

Jørgensen, B. B., and Boetius, A. (2007). Feast and famine – microbial life in the deep-sea bed. Nature Reviews. Microbiology 5, 770–781.
Feast and famine – microbial life in the deep-sea bed.Crossref | GoogleScholarGoogle Scholar | 17828281PubMed |

Jörger, K. M., and Schrödl, M. (2013). How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology 10, 59.
How to describe a cryptic species? Practical challenges of molecular taxonomy.Crossref | GoogleScholarGoogle Scholar | 24073641PubMed |

Josefson, A. (1975). Ophryotrocha longidentata sp. n. and Dorvillea erucaeformis (Malmgren) (Polychaeta, Dorvilleidae) from the west coast of Scandinavia. Zoologica Scripta 4, 49–54.
Ophryotrocha longidentata sp. n. and Dorvillea erucaeformis (Malmgren) (Polychaeta, Dorvilleidae) from the west coast of Scandinavia.Crossref | GoogleScholarGoogle Scholar |

Jumars, P. A. (1974). A generic revision of the Dorvilleidae (Polychaeta), with six new species from the deep North Pacific. Zoological Journal of the Linnean Society 54, 101–135.
A generic revision of the Dorvilleidae (Polychaeta), with six new species from the deep North Pacific.Crossref | GoogleScholarGoogle Scholar |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Kielan-Jaworowska, Z. (1966). Polychaete jaw apparatuses from the Ordovician and Silurian of Poland and a comparison with modern forms. Palaeontologia Polonica 16, 1–152.

Leigh, J. W., and Bryant, D. (2015). POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6, 1110–1116.
POPART: full-feature software for haplotype network construction.Crossref | GoogleScholarGoogle Scholar |

Levin, L. A., Ziebis, W., Mendoza, G. F., Bertics, V. J., Washington, T., Gonzalez, J., Thurber, A. R., Ebbe, B., and Lee, R. W. (2013). Ecological release and niche partitioning under stress: lessons from dorvilleid polychaetes in sulfidic sediments at methane seeps. Deep-sea Research – II. Topical Studies in Oceanography 92, 214–233.
Ecological release and niche partitioning under stress: lessons from dorvilleid polychaetes in sulfidic sediments at methane seeps.Crossref | GoogleScholarGoogle Scholar |

Levin, L. A., Mendoza, G. F., Grupe, B. M., Gonzalez, J. P., Jellison, B., Rouse, G. W., Thurber, A. R., and Warén, A. (2015). Biodiversity on the rocks: macrofauna inhabiting authigenic carbonate at Costa Rica methane seeps. PLoS One 10, e0131080.
Biodiversity on the rocks: macrofauna inhabiting authigenic carbonate at Costa Rica methane seeps.Crossref | GoogleScholarGoogle Scholar | 26684837PubMed |

Levin, L. A., Baco, A. R., Bowden, D. A., Colaço, A., Cordes, E. E., Cunha, M. R., Demopoulos, A. W. J., Gobin, J., Grupe, B. M., Le, J., Metaxas, A., Netburn, A. N., Rouse, G. W., Thurber, A. R., Tunnicliffe, V., Van Dover, C. L., Vanreusel, A., and Watling, L. (2016). Hydrothermal vents and methane seeps: rethinking the sphere of influence. Frontiers in Marine Science 3, 72.
Hydrothermal vents and methane seeps: rethinking the sphere of influence.Crossref | GoogleScholarGoogle Scholar |

Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50, 913–925.
A likelihood approach to estimating phylogeny from discrete morphological character data.Crossref | GoogleScholarGoogle Scholar | 12116640PubMed |

Lindgren, J., Hatch, A., Hourdez, S., Seid, C., and Rouse, G. W. (2019). Phylogeny, biogeography of Branchipolynoe (Polynoidae, Phyllodocida, Aciculata, Annelida), with descriptions of five new species from methane seeps and hydrothermal vents. Diversity 11, 153.
Phylogeny, biogeography of Branchipolynoe (Polynoidae, Phyllodocida, Aciculata, Annelida), with descriptions of five new species from methane seeps and hydrothermal vents.Crossref | GoogleScholarGoogle Scholar |

Macnaughton, M. O., Eibye-Jacobsen, D., and Worsaae, K. (2011). Comparative studies of jaw morphology and ontogeny in two species of asexually reproducing Dorvilleidae (Annelida). Zoologischer Anzeiger 250, 134–142.
Comparative studies of jaw morphology and ontogeny in two species of asexually reproducing Dorvilleidae (Annelida).Crossref | GoogleScholarGoogle Scholar |

Marenzeller, E. (1902). Südjapanische Anneliden. 3. Aphroditea, Eunicea. Denkschriften der Akademie der Wissenschaften, Wien. 72, 563–582.

McMullin, E. R., Bergquist, D. C., and Fisher, C. R. (2000). Metazoans in extreme environments: adaptations of hydrothermal vent and hydrocarbon seep fauna. Gravitational and Space Biology Bulletin 13, 13–23.
| 11543277PubMed |

Mercier, A., Baillon, S., and Hamel, J. F. (2014). Life history and seasonal breeding of the deep-sea annelid Ophryotrocha sp. (Polychaeta: Dorvilleidae). Deep-sea Research – I. Oceanographic Research Papers 91, 27–35.
Life history and seasonal breeding of the deep-sea annelid Ophryotrocha sp. (Polychaeta: Dorvilleidae).Crossref | GoogleScholarGoogle Scholar |

Mierzejewski, P. (1978). Molting of the jaws of the early Paleozoic Eunicida (Annelida, Polychaeta). Acta Palaeontologica Polonica 23, 73–88.

Mierzejewski, P., and Mierzejewska, G. (1975). Xenognath type of polychaete jaw apparatuses. Acta Palaeontologica Polonica 20, 437–448.

Nelson, K., and Fisher, C. R. (2000). Absence of cospeciation in deep-sea vestimentiferan tube worms and their bacterial endosymbionts. Symbiosis 28, 1–15.

Nygren, A. (2014). Cryptic polychaete diversity: a review. Zoologica Scripta 43, 172–183.
Cryptic polychaete diversity: a review.Crossref | GoogleScholarGoogle Scholar |

Nygren, A., Norlinder, E., Panova, M., and Pleijel, F. (2011). Colour polymorphism in the polychaete Harmothoe imbricata (Linnaeus, 1767). Marine Biology Research 7, 54–62.
Colour polymorphism in the polychaete Harmothoe imbricata (Linnaeus, 1767).Crossref | GoogleScholarGoogle Scholar |

Orensanz, J. M. (1990). The eunicemorph polychaete annelids from antarctic and subantarctic seas. Antarctic Research Series 52, 1–183.
The eunicemorph polychaete annelids from antarctic and subantarctic seas.Crossref | GoogleScholarGoogle Scholar |

Oug, E. (1978). New and lesser known Dorvilleidae (Annelida, Polychaeta) from Scandinavian and northeast American waters. Sarsia 63, 285–303.
New and lesser known Dorvilleidae (Annelida, Polychaeta) from Scandinavian and northeast American waters.Crossref | GoogleScholarGoogle Scholar |

Oug, E. (1990). Morphology, reproduction, and development of a new species of Ophryotrocha (Polychaeta: Dorvilleidae) with strong sexual dimorphism. Sarsia 75, 191–201.
Morphology, reproduction, and development of a new species of Ophryotrocha (Polychaeta: Dorvilleidae) with strong sexual dimorphism.Crossref | GoogleScholarGoogle Scholar |

Oyarzun, F. X., Mahon, A. R., Swalla, B. J., and Halanych, K. M. (2011). Phylogeography and reproductive variation of the poecilogonous polychaete Boccardia proboscidea (Annelida: Spionidae) along the west coast of North America. Evolution & Development 13, 489–503.
Phylogeography and reproductive variation of the poecilogonous polychaete Boccardia proboscidea (Annelida: Spionidae) along the west coast of North America.Crossref | GoogleScholarGoogle Scholar |

Paavo, B., Bailey-brock, J. H., Åkesson, B., and Nylund, A. (2000). Morphology and life history of Ophryotrocha adherens sp. nov. (Polychaeta, Dorvilleidae). Sarsia 85, 251–264.
Morphology and life history of Ophryotrocha adherens sp. nov. (Polychaeta, Dorvilleidae).Crossref | GoogleScholarGoogle Scholar |

Page, R. D. M. (2016). DNA barcoding and taxonomy: dark taxa and dark texts. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 371, 20150334.
DNA barcoding and taxonomy: dark taxa and dark texts.Crossref | GoogleScholarGoogle Scholar |

Palumbi, S. R. (1996). Nucleic acids II: the polymerase chain reaction. In ‘Molecular Systematics’. (Eds D. M. Hillis, C. Moritz, B. K. Mable, and M. A. Sunderland.) pp. 205–247. (Sinauer Associates: Sunderland, MA, USA.)

Parfitt, E. (1866). Description of a Nereis new to science. Zoologist 21, 113–114.

Paxton, H. (2004). Jaw growth and replacement in Ophryotrocha labronica (Polychaeta, Dorvilleidae). Zoomorphology 123, 147–154.
Jaw growth and replacement in Ophryotrocha labronica (Polychaeta, Dorvilleidae).Crossref | GoogleScholarGoogle Scholar |

Paxton, H. (2005). Molting polychaete jaws – ecdysozoans are not the only molting animals. Evolution & Development 7, 337–340.
Molting polychaete jaws – ecdysozoans are not the only molting animals.Crossref | GoogleScholarGoogle Scholar |

Paxton, H. (2006). Replacement of adult maxillary jaws in Eunicida (Polychaeta). Scientia Marina 70, 331–336.
Replacement of adult maxillary jaws in Eunicida (Polychaeta).Crossref | GoogleScholarGoogle Scholar |

Paxton, H. (2009). Phylogeny of Eunicida (Annelida) based on morphology of jaws. Zoosymposia 2, 241–264.
Phylogeny of Eunicida (Annelida) based on morphology of jaws.Crossref | GoogleScholarGoogle Scholar |

Paxton, H., and Morineaux, M. (2009). Three species of Dorvilleidae (Annelida: Polychaeta) associated with Atlantic deep-sea reducing habitats, with the description of Ophryotrocha fabriae, new species. Proceedings of the Biological Society of Washington 122, 14–25.
Three species of Dorvilleidae (Annelida: Polychaeta) associated with Atlantic deep-sea reducing habitats, with the description of Ophryotrocha fabriae, new species.Crossref | GoogleScholarGoogle Scholar |

Pfenninger, M., and Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7, 121.
Cryptic animal species are homogeneously distributed among taxa and biogeographical regions.Crossref | GoogleScholarGoogle Scholar | 17640383PubMed |

Plouviez, S., Jacobson, A., Wu, M., and Van Dover, C. L. (2015). Characterization of vent fauna at the Mid-Cayman Spreading Center. Deep-sea Research – I. Oceanographic Research Papers 97, 124–133.
Characterization of vent fauna at the Mid-Cayman Spreading Center.Crossref | GoogleScholarGoogle Scholar |

Portail, M., Olu, K., Dubois, S. F., Escobar-Briones, E., Gelinas, Y., Menot, L., and Sarrazin, J. (2016). Food-web complexity in Guaymas Basin hydrothermal vents and cold seeps. PLoS One 11, e0162263.
Food-web complexity in Guaymas Basin hydrothermal vents and cold seeps.Crossref | GoogleScholarGoogle Scholar | 27683216PubMed |

Ravara, A., Marçal, A. R., Wiklund, H., and Hilário, A. (2015). First account on the diversity of Ophryotrocha (Annelida, Dorvilleidae) from a mammal-fall in the deep-Atlantic Ocean with the description of three new species. Systematics and Biodiversity 13, 555–570.
First account on the diversity of Ophryotrocha (Annelida, Dorvilleidae) from a mammal-fall in the deep-Atlantic Ocean with the description of three new species.Crossref | GoogleScholarGoogle Scholar |

Richards, T. L. (1967). Reproduction and development of the polychaete Stauronereis rudolphi, including a summary of development in the superfamily Eunicea. Marine Biology 1, 124–133.
Reproduction and development of the polychaete Stauronereis rudolphi, including a summary of development in the superfamily Eunicea.Crossref | GoogleScholarGoogle Scholar |

Rogers, A. D., Tyler, P. A., Connelly, D. P., Copley, J. T., James, R., Larter, R. D., Linse, K., Mills, R. A., Garabato, A. N., Pancost, R. D., Pearce, D. A., Polunin, N. V. C., German, C. R., Shank, T., Boersch-Supan, P. H., Alker, B. J., Aquilina, A., Bennett, S. A., Clarke, A., Dinley, R. J. J., Graham, A. G. C., Green, D. R. H., Hawkes, J. A., Hepburn, L., Hilario, A., Huvenne, V. A. I., Marsh, L., Ramirez-Llodra, E., Reid, W. D. K., Roterman, C. N., Sweeting, C. J., Thatje, S., and Zwirglmaier, K. (2012). The discovery of new deep-sea hydrothermal vent communities in the Southern Ocean and implications for biogeography. PLoS Biology 10, e1001234.
The discovery of new deep-sea hydrothermal vent communities in the Southern Ocean and implications for biogeography.Crossref | GoogleScholarGoogle Scholar | 22235194PubMed |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Rouse, G. W. (2000a). Polychaetes have evolved feeding larvae several times. Bulletin of Marine Science 67, 391–409.

Rouse, G. W. (2000b). Bias? What bias? The evolution of downstream larval-feeding in animals. Zoologica Scripta 29, 213–236.
Bias? What bias? The evolution of downstream larval-feeding in animals.Crossref | GoogleScholarGoogle Scholar |

Rouse, G. W., Carvajal, I. J., and Pleijel, F. (2018). Phylogeny of Hesionidae (Aciculata, Annelida), with four new species from deep-sea eastern Pacific methane seeps, and resolution of the affinity of Hesiolyra. Invertebrate Systematics 32, 1050–1068.
Phylogeny of Hesionidae (Aciculata, Annelida), with four new species from deep-sea eastern Pacific methane seeps, and resolution of the affinity of Hesiolyra.Crossref | GoogleScholarGoogle Scholar |

Sibuet, M., and Olu, K. (1998). Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-sea Research – II. Topical Studies in Oceanography 45, 517–567.
Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins.Crossref | GoogleScholarGoogle Scholar |

Silvestro, D., and Michalak, I. (2012). raxmlGUI: a graphical front-end for RAxML. Organisms, Diversity & Evolution 12, 335–337.
raxmlGUI: a graphical front-end for RAxML.Crossref | GoogleScholarGoogle Scholar |

Smith, C. R., Bernardino, A. F., Baco, A., Hannides, A., and Altamira, I. (2014). Seven year enrichment: macrofaunal succession in deep-sea sediments around a 30 tonne whale fall in the Northeast Pacific. Marine Ecology Progress Series 515, 133–149.
Seven year enrichment: macrofaunal succession in deep-sea sediments around a 30 tonne whale fall in the Northeast Pacific.Crossref | GoogleScholarGoogle Scholar |

Smith, C. R., Glover, A. G., Treude, T., Higgs, N. D., and Amon, D. J. (2015). Whale-fall ecosystems: recent insights into ecology, paleoecology, and evolution. Annual Review of Marine Science 7, 571–596.
Whale-fall ecosystems: recent insights into ecology, paleoecology, and evolution.Crossref | GoogleScholarGoogle Scholar | 25251277PubMed |

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Stiller, J., Rousset, V., Pleijel, F., Chevaldonné, P., Vrijenhoek, R. C., and Rouse, G. W. (2013). Phylogeny, biogeography and systematics of hydrothermal vent and methane seep Amphisamytha (Ampharetidae, Annelida), with descriptions of three new species. Systematics and Biodiversity 11, 35–65.
Phylogeny, biogeography and systematics of hydrothermal vent and methane seep Amphisamytha (Ampharetidae, Annelida), with descriptions of three new species.Crossref | GoogleScholarGoogle Scholar |

Swofford, D. L. (2002). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.’ (Sinauer Associates: Sunderland, MA, USA.)

Taboada, S., Wiklund, H., Glover, A. G., Dahlgren, T. G., Cristobo, J., and Avila, C. (2013). Two new Antarctic Ophryotrocha (Annelida: Dorvilleidae) described from shallow-water whale bones. Polar Biology 36, 1031–1045.
Two new Antarctic Ophryotrocha (Annelida: Dorvilleidae) described from shallow-water whale bones.Crossref | GoogleScholarGoogle Scholar |

Taboada, S., Bas, M., and Avila, C. (2015). A new Parougia species (Annelida, Dorvilleidae) associated with eutrophic marine habitats in Antarctica. Polar Biology 38, 517–527.
A new Parougia species (Annelida, Dorvilleidae) associated with eutrophic marine habitats in Antarctica.Crossref | GoogleScholarGoogle Scholar |

Taboada, S., Bas, M., Leiva, C., Garriga, M., Sardá, R., and Avila, C. (2016). Life after death: shallow‐water Mediterranean invertebrate communities associated with mammal bones. Marine Ecology (Berlin) 37, 164–178.
Life after death: shallow‐water Mediterranean invertebrate communities associated with mammal bones.Crossref | GoogleScholarGoogle Scholar |

Taboada, S., Leiva, C., Bas, M., Schult, N., and McHugh, D. (2017). Cryptic species and colonization processes in Ophryotrocha (Annelida, Dorvilleidae) inhabiting vertebrate remains in the shallow-water Mediterranean. Zoologica Scripta 46, 611–624.
Cryptic species and colonization processes in Ophryotrocha (Annelida, Dorvilleidae) inhabiting vertebrate remains in the shallow-water Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Templeton, A. R., Crandall, K. A., and Sing, C. F. (2002). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–633.

Thornhill, D. J., Struck, T. H., Ebbe, B., Lee, R. W., Mendoza, G. F., Levin, L. A., and Halanych, K. M. (2012). Adaptive radiation in extremophilic Dorvilleidae (Annelida): diversification of a single colonizer or multiple independent lineages? Ecology and Evolution 2, 1958–1970.
Adaptive radiation in extremophilic Dorvilleidae (Annelida): diversification of a single colonizer or multiple independent lineages?Crossref | GoogleScholarGoogle Scholar | 22957196PubMed |

Thurber, A. R., Levin, L. A., Orphan, V. J., and Marlow, J. J. (2012). Archaea in metazoan diets: implications for food webs and biogeochemical cycling. The ISME Journal 6, 1602–1612.
Archaea in metazoan diets: implications for food webs and biogeochemical cycling.Crossref | GoogleScholarGoogle Scholar | 22402398PubMed |

Tunnicliffe, V., and Fowler, C. M. R. (1996). Influence of sea-floor spreading on the global hydrothermal vent fauna. Nature 379, 531–533.
Influence of sea-floor spreading on the global hydrothermal vent fauna.Crossref | GoogleScholarGoogle Scholar |

Van Dover, C. L., German, C. R., Speer, K. G., Parson, L. M., and Vrijenhoek, R. C. (2002). Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295, 1253–1257.
Evolution and biogeography of deep-sea vent and seep invertebrates.Crossref | GoogleScholarGoogle Scholar | 11847331PubMed |

Vrijenhoek, R. C. (2009). Cryptic species, phenotypic plasticity, and complex life histories: assessing deep-sea faunal diversity with molecular markers. Deep-sea Research – II. Topical Studies in Oceanography 56, 1713–1723.
Cryptic species, phenotypic plasticity, and complex life histories: assessing deep-sea faunal diversity with molecular markers.Crossref | GoogleScholarGoogle Scholar |

Watson, C., Ignacio Carvajal, J. I., Sergeeva, N. G., Pleijel, F., and Rouse, G. W. (2016). Free-living calamyzin chrysopetalids (Annelida) from methane seeps, anoxic basins, and whale falls. Zoological Journal of the Linnean Society 177, 700–719.
Free-living calamyzin chrysopetalids (Annelida) from methane seeps, anoxic basins, and whale falls.Crossref | GoogleScholarGoogle Scholar |

Webster, H. E., and Benedict, J. E. (1884). The Annelida Chaetopoda from Provincetown and Wellfleet, Massachusetts. Annual Report of the United States Commission of Fish and Fisheries, Washington 1881, 699–747.

Wei, N.-W. V., Watson, C., and Gibb, K. S. (2013). Phylogenetic and geographic variation of northern Australian sympatric lineages of Treptopale homalos and T. paromolos (Annelida: Phyllodocida: Chrysopetalidae) using mitochondrial and nuclear sequences. Marine Biology Research 9, 692–702.
Phylogenetic and geographic variation of northern Australian sympatric lineages of Treptopale homalos and T. paromolos (Annelida: Phyllodocida: Chrysopetalidae) using mitochondrial and nuclear sequences.Crossref | GoogleScholarGoogle Scholar |

Wheeler, A. J., Murton, B., Copley, J., Lim, A., Carlsson, J., Collins, P., Dorschel, B., Green, D., Judge, M., Nye, V., Benzie, J., Antoniacomi, A., Coughlan, M., and Morris, K. (2013). Moytirra: discovery of the first known deep-sea hydrothermal vent field on the slow-spreading Mid-Atlantic Ridge north of the Azores. Geochemistry Geophysics Geosystems 14, 4170–4184.
Moytirra: discovery of the first known deep-sea hydrothermal vent field on the slow-spreading Mid-Atlantic Ridge north of the Azores.Crossref | GoogleScholarGoogle Scholar |

Whiting, M. F. (2002). Phylogeny of the holometabolous insect orders: molecular evidence. Zoologica Scripta 31, 3–15.
Phylogeny of the holometabolous insect orders: molecular evidence.Crossref | GoogleScholarGoogle Scholar |

Whiting, M. F., Carpenter, J. C., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology.Crossref | GoogleScholarGoogle Scholar | 11975347PubMed |

Wiklund, H., Glover, A. G., and Dahlgren, T. G. (2009). Three new species of Ophryotrocha (Annelida: Dorvilleidae) from a whale-fall in the north-east Atlantic. Zootaxa 2228, 43–56.
Three new species of Ophryotrocha (Annelida: Dorvilleidae) from a whale-fall in the north-east Atlantic.Crossref | GoogleScholarGoogle Scholar |

Wiklund, H., Altamira, I. V., Glover, A. G., Smith, C. R., Baco, A. R., and Dahlgren, T. G. (2012). Systematics and biodiversity of Ophryotrocha (Annelida, Dorvilleidae) with descriptions of six new species from deep-sea whale-fall and wood-fall habitats in the north-east Pacific. Systematics and Biodiversity 10, 243–259.
Systematics and biodiversity of Ophryotrocha (Annelida, Dorvilleidae) with descriptions of six new species from deep-sea whale-fall and wood-fall habitats in the north-east Pacific.Crossref | GoogleScholarGoogle Scholar |

Winckler, G., Newton, R., Schlosser, P., and Crone, T. J. (2010). Mantle helium reveals Southern Ocean hydrothermal venting. Geophysical Research Letters 37, L05601.
Mantle helium reveals Southern Ocean hydrothermal venting.Crossref | GoogleScholarGoogle Scholar |

Wolf, P. S. (1986). Three new species of Dorvilleidae (Annelida: Polychaeta) from Puerto Rico and Florida and a new genus for dorvilleids from Scandinavia and North America. Proceedings of the Biological Society of Washington 99, 627–638.

Wolff, T. (2005). Composition and endemism of the deep-sea hydrothermal vent fauna. Cahiers de Biologie Marine 46, 97–104.

Zhang, D.-S., Zhou, Y.-D., Wang, C.-S., and Rouse, G. W. (2017). A new species of Ophryotrocha (Annelida: Eunicida: Dorvilleidae) from hydrothermal vents on the southwest Indian Ridge. ZooKeys 687, 1–9.
A new species of Ophryotrocha (Annelida: Eunicida: Dorvilleidae) from hydrothermal vents on the southwest Indian Ridge.Crossref | GoogleScholarGoogle Scholar |