Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Blind scolopendrid centipedes of the genus Cormocephalus from subterranean habitats in Western Australia (Myriapoda: Scolopendromorpha: Scolopendridae)

Gregory D. Edgecombe https://orcid.org/0000-0002-9591-8011 A , Joel A. Huey https://orcid.org/0000-0001-7108-0552 B C D , William F. Humphreys B D , Mia Hillyer B , Mieke A. Burger B , Erich S. Volschenk E and Julianne M. Waldock B F
+ Author Affiliations
- Author Affiliations

A The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.

B Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia.

C Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.

D School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

E Alacran Environmental Science, 32 Amalfi Way, Canning Vale, WA, 6155 Australia.

F Corresponding author. Email: julianne.waldock@museum.wa.gov.au

Invertebrate Systematics 33(6) 807-824 https://doi.org/10.1071/IS19015
Submitted: 14 March 2019  Accepted: 13 May 2019   Published: 14 November 2019

Abstract

Only a single blind species is known in the centipede family Scolopendridae, representing the monotypic genus Tonkinodentus Schileyko, 1992, from Vietnam. All of more than 400 other species have four ocelli on each side of the cephalic plate. A complex of three new blind species of the genus Cormocephalus Newport, 1844, is described from the subterranean fauna of the central Pilbara region of Western Australia. Phylogenies based on sequence data for the barcode region of COI and a concatenated matrix that also includes 12S rRNA, 28S rRNA and ITS2 unite the blind Pilbara species as a monophyletic group, albeit with moderate bootstrap support, informally named the C. sagmus species group. Cormocephalus sagmus, C. pyropygus and C. delta spp. nov. supplement 17 epigean congeners previously described from Australia. The new species are all morphologically similar, but can be distinguished using the shape and spinulation of the ultimate leg prefemur. Two additional genetically distinct lineages were recovered that are not described, owing to the specimens being immature or lacking diagnostic morphological characters. The subterranean radiation in the Pilbara is more closely related to species from forests in the south-west of Western Australia than to congeners from the arid zone.

http://zoobank.org/urn:lsid:zoobank.org:pub:6F67FD31-A373-4DC5-A5FD-374D32DEE02C

Additional keywords: blind Scolopendridae, morphology, Pilbara, taxonomy.


References

Attems, C. G. (1930). ‘Das Tierreich. Leif 54. Myriapoda. 2. Scolopendromorpha.’ (Walter de Gruyter: Berlin, Germany.)

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., Ingram, K. K., and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
Cryptic species as a window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |

Biota (2006). Mesa A and Robe Valley Mesas troglobitic fauna survey. Unpublished report. Available at http://www.epa.wa.gov.au/sites/default/files/PER_documentation/Vegetation%20and%20Flora%20and%20Fauna_Biota%202006f%20Subterranean%20Fauna%20Assessment.pdf [verified 23 May 2019].

Bollman, C. H. (1893). The Myriapoda of North America. Bulletin of the United States National Museum 46, 1–210.

Bonato, L., Edgecombe, G. D., Lewis, J. G. E., Minelli, A., Pereira, L. A., Shelley, R. M., and Zapparoli, M. (2010). A common terminology for the external anatomy of centipedes (Chilopoda). ZooKeys 69, 17–51.
A common terminology for the external anatomy of centipedes (Chilopoda).Crossref | GoogleScholarGoogle Scholar |

Brown, R. W. (1956). ‘Composition of Scientific Words: a Manual of Methods and a Lexicon of Materials for the Practice of Logotechnics.’ (Smithsonian Books: Washington, DC.)

Byrne, M., Yeates, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A., Cooper, S. J. B., Donnellan, S. C., Keogh, S., Leijs, R., Melville, J., Murphy, D., Porch, N., and Wyrwoll, K.-H. (2008). Birth of a biome: synthesizing environmental and molecular studies of the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: synthesizing environmental and molecular studies of the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 18761619PubMed |

Byrne, M., Steane, D. A., Joseph, L., Yeates, D. K., Jordan, G. L., Crayn, D., Aplin, K., Cantrill, D. J., Cook, L. G., Crisp, M. D., Keogh, J. S., Melville, J., Moritz, C., Porch, N., Sniderman, J. M. K., Sunnucks, P., and Weston, P. H. (2011). Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography 38, 1635–1656.
Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota.Crossref | GoogleScholarGoogle Scholar |

Cooper, S. J. B., Bradbury, J. H., Saint, K. M., Leys, R., Austin, A. D., and Humphreys, W. F. (2007). Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Molecular Ecology 16, 1533–1544.
Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia.Crossref | GoogleScholarGoogle Scholar |

Culver, D. C., and Pipan, T. (2014). ‘Shallow Subterranean Habitats: Ecology, Evolution, and Conservation.’ (Oxford University Press: Oxford, UK.)

Dogramaci, S., Skrzypek, G., Dodson, W., and Grierson, P. F. (2012). Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of subtropical northwest Australia. Journal of Hydrology 475, 281–293.
Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of subtropical northwest Australia.Crossref | GoogleScholarGoogle Scholar |

Duuring, P., Teitler, Y., and Hagemann, S. (2017). Tools for discovering BIF-hosted iron ore deposits in the Pilbara Craton. Report 163. Department of Mines and Petroleum, Government of Western Australia, Perth, W.A., Australia.

Edgecombe, G., and Koch, M. (2008). Phylogeny of scolopendromorph centipedes (Chilopoda): morphological analysis featuring characters from the peristomatic area. Cladistics 24, 872–901.
Phylogeny of scolopendromorph centipedes (Chilopoda): morphological analysis featuring characters from the peristomatic area.Crossref | GoogleScholarGoogle Scholar |

EPA (2016). ‘Technical Guidance, Sampling Methods for Subterranean Fauna.’ Available at http://www.epa.wa.gov.au/sites/default/files/Policies_and_Guidance/Tech%20guidance-%20Sampling-Subt-fauna-Dec-2016.pdf [accessed January 2018].

Fernández, R., Edgecombe, G. D., and Giribet, G. (2016). Exploring phylogenetic relationships within Myriapoda and the effects of matrix composition and occupancy on phylogenomic reconstruction. Systematic Biology 65, 871–889.
Exploring phylogenetic relationships within Myriapoda and the effects of matrix composition and occupancy on phylogenomic reconstruction.Crossref | GoogleScholarGoogle Scholar | 27162151PubMed |

Finston, T. L., Bradbury, J. H., Johnson, M. S., and Knott, B. (2004). When morphology and molecular markers conflict: a case history of subterranean amphipods from the Pilbara, Western Australia. Animal Biodiversity and Conservation 27, 83–94.

Finston, T. L., Johnson, M. S., Humphreys, W. F., Eberhard, S., and Halse, S. (2007). Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology 16, 355–365.
Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape.Crossref | GoogleScholarGoogle Scholar | 17217350PubMed |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |

Guzik, M. T., Cooper, S. J. B., Humphreys, W. F., and Austin, A. D. (2009). Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia. Molecular Ecology 18, 3683–3698.
Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia.Crossref | GoogleScholarGoogle Scholar | 19674311PubMed |

Halse, S. A, and Pearson, G. B. (2014). Troglofauna in the vadose zone: comparison of scraping and trapping results and sampling adequacy. Subterranean Biology 13, 17–34.
Troglofauna in the vadose zone: comparison of scraping and trapping results and sampling adequacy.Crossref | GoogleScholarGoogle Scholar |

Humphreys, W. F., and Adams, M. (2001). Allozyme variation in the troglobitic millipede Stygiochiropus communis (Diplopoda: Paradoxosomatidae) from arid tropical Cape Range, northwestern Australia: population structure and implications for the management of the region. Records of the Western Australian Museum 64, 15–36.
Allozyme variation in the troglobitic millipede Stygiochiropus communis (Diplopoda: Paradoxosomatidae) from arid tropical Cape Range, northwestern Australia: population structure and implications for the management of the region.Crossref | GoogleScholarGoogle Scholar |

Humphreys, W. F., and Shear, W. A. (1993). Troglobitic millipedes (Diplopoda: Paradoxosomatidae) from semi-arid Cape Range, Western Australia: systematics and biology. Invertebrate Taxonomy 7, 173–195.
Troglobitic millipedes (Diplopoda: Paradoxosomatidae) from semi-arid Cape Range, Western Australia: systematics and biology.Crossref | GoogleScholarGoogle Scholar |

Katoh, K., Misawa, K., Toh, H., and Miyata, T. (2002). A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
A novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 12136088PubMed |

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Koch, L. (1878). Japanesische Arachniden und Myriapoden. Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien 27, 785–795.

Koch, L. E. (1983). Revision of the Australian centipedes of the genus Cormocephalus Newport (Chilopoda: Scolopendridae: Scolopendrinae). Australian Journal of Zoology 31, 799–833.
Revision of the Australian centipedes of the genus Cormocephalus Newport (Chilopoda: Scolopendridae: Scolopendrinae).Crossref | GoogleScholarGoogle Scholar |

Koch, M., Pärschke, S., and Edgecombe, G. D. (2009). Phylogenetic implications of gizzard morphology in scolopendromorph centipedes (Chilopoda). Zoologica Scripta 38, 269–288.
Phylogenetic implications of gizzard morphology in scolopendromorph centipedes (Chilopoda).Crossref | GoogleScholarGoogle Scholar |

Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villanbalnca, F. X., and Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86, 6196–6200.
Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers.Crossref | GoogleScholarGoogle Scholar | 2762322PubMed |

Kohlrausch, E. (1878). Beiträge zur Kenntnis der Scolopendriden. Inaugural Dissertation, Hochlöblicher Philosophischen Facultät zu Marburg, Marburg, Germany.

Kraepelin, K. (1908). Scolopendridae. In ‘Die Fauna Südwest-Australiens, Vol. 2, Pt 8’. (Eds W. Michaelsen and R. Hartmeyer; Publ. Gustav Fischer, Jena, Germany) pp. 105–128.

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.
MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets.Crossref | GoogleScholarGoogle Scholar | 27004904PubMed |

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 22319168PubMed |

Leijs, R., van Nes, E. H., Watts, C. H., Cooper, S. J. B., Humphreys, W. F., and Hogendoorn, K. (2012). Evolution of blind beetles in isolated aquifers: a test of alternative modes of speciation. PLoS One 7, e34260.
Evolution of blind beetles in isolated aquifers: a test of alternative modes of speciation.Crossref | GoogleScholarGoogle Scholar | 22479581PubMed |

Lewis, J. G. E. (1968). Individual variation in a population of the centipede Scolopendra amazonica from Nigeria and its implications for methods of taxonomic discrimination in the Scolopendridae. Zoological Journal of the Linnean Society 47, 315–326.
Individual variation in a population of the centipede Scolopendra amazonica from Nigeria and its implications for methods of taxonomic discrimination in the Scolopendridae.Crossref | GoogleScholarGoogle Scholar |

Leys, R., Watts, C. H. S., Cooper, S. J. B., and Humphreys, W. F. (2003). Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57, 2819–2834.
| 14761060PubMed |

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, New Orleans, LA, USA, 14 November 2010, pp. 1–8.

Newport, G. (1844). Conclusion of the monograph on the Myriapoda Chilopoda. Proceedings of the Linnean Society of London 1, 191–197.

Nunn, G. B., Theisen, B. F., Christensen, B., and Arctander, P. (1996). Simplicity-correlated size growth of the nuclear 28S ribosomal expansion segment in the crustacean order Isopoda. Journal of Molecular Evolution 42, 211–223.
Simplicity-correlated size growth of the nuclear 28S ribosomal expansion segment in the crustacean order Isopoda.Crossref | GoogleScholarGoogle Scholar | 8919873PubMed |

Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J. (2014). ‘Tracer v1.6.’ Available at http://beast.bio.ed.ac.uk/Tracer [verified 23 May 2019].

Rix, M. G., Harvey, M. S., and Roberts, J. D. (2010). A revision of the textricellin spider genus Raveniella (Araneae: Araneoidea: Micropholcommatidae): exploring patterns of phylogeny and biogeography in an Australian biodiversity hotspot. Invertebrate Systematics 24, 209–237.
A revision of the textricellin spider genus Raveniella (Araneae: Araneoidea: Micropholcommatidae): exploring patterns of phylogeny and biogeography in an Australian biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Schileyko, A. A. (2007). The scolopendromorph centipedes (Chilopoda) of Vietnam, with contributions to the faunas of Cambodia and Laos. Part 3. Arthropoda Selecta 16, 71–95.

Schileyko, A. A., and Pavlinov, I. J (1997). A cladistic analysis of the order Scolopendromorpha (Chilopoda). Entomologica Scandinavica 51, 33–40.

Schileyko, A. A., and Solovyeva, E. N. (2019). On the taxonomic position of the enigmatic genus Tonkinodentus Schileyko, 1992 (Chilopoda: Scolopendromrpha): the first molecular data. ZooKeys 840, 133–155.
On the taxonomic position of the enigmatic genus Tonkinodentus Schileyko, 1992 (Chilopoda: Scolopendromrpha): the first molecular data.Crossref | GoogleScholarGoogle Scholar |

Siriwut, W., Edgecombe, G. D., Sutcharit, C., Tongkerd, P., and Panha, S. (2016). A taxonomic review of the centipede genus Scolopendra Linnaeus, 1758 (Scolopendromorpha, Scolopendridae) in mainland Southeast Asia, with description of a new species from Laos. ZooKeys 590, 1–124.
A taxonomic review of the centipede genus Scolopendra Linnaeus, 1758 (Scolopendromorpha, Scolopendridae) in mainland Southeast Asia, with description of a new species from Laos.Crossref | GoogleScholarGoogle Scholar |

Tamura, K., Nei, M., and Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America 101, 11 030–11 035.
Prospects for inferring very large phylogenies by using the neighbor-joining method.Crossref | GoogleScholarGoogle Scholar |

Vahtera, V., Edgecombe, G. D., and Giribet, G. (2012a). Evolution of blindness in scolopendromorph centipedes (Chilopoda: Scolopendromorpha): insight from an expanded sampling of molecular data. Cladistics 28, 4–20.
Evolution of blindness in scolopendromorph centipedes (Chilopoda: Scolopendromorpha): insight from an expanded sampling of molecular data.Crossref | GoogleScholarGoogle Scholar |

Vahtera, V., Edgecombe, G. D., and Giribet, G. (2012b). Spiracle structure in scolopendromorph centipedes (Chilopoda: Scolopendromorpha) and its contribution to phylogenetics. Zoomorphology 131, 225–248.
Spiracle structure in scolopendromorph centipedes (Chilopoda: Scolopendromorpha) and its contribution to phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Vahtera, V., Edegecombe, G. D., and Giribet, G. (2013). Phylogenetics of scolopendromorph centipedes: can denser taxon sampling improve an artificial classification? Invertebrate Systematics 27, 578–602.
Phylogenetics of scolopendromorph centipedes: can denser taxon sampling improve an artificial classification?Crossref | GoogleScholarGoogle Scholar |

Whiting, M. F., Carpenter, J. M., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
| 11975347PubMed |