Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

The anatomy of an unstable node: a Levantine relict precipitates phylogenomic dissolution of higher-level relationships of the armoured harvestmen (Arachnida: Opiliones: Laniatores)

Shlomi Aharon A , Jesus A. Ballesteros B , Audrey R. Crawford B , Keyton Friske B , Guilherme Gainett B , Boaz Langford C , Carlos E. Santibáñez-López B , Shemesh Ya’aran C , Efrat Gavish-Regev A D and Prashant P. Sharma https://orcid.org/0000-0002-2328-9084 B D
+ Author Affiliations
- Author Affiliations

A The Arachnid National Natural History Collection, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.

B Department of Integrative Biology, University of Madison-Wisconsin, 352 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA.

C Israel Cave Research Center, Institute of Earth Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.

D Corresponding authors. Email: efrat.gavish-regev@mail.huji.ac.il; prashant.sharma@wisc.edu

Invertebrate Systematics 33(5) 697-717 https://doi.org/10.1071/IS19002
Submitted: 10 January 2019  Accepted: 28 March 2019   Published: 3 October 2019

Abstract

After tumultuous revisions to the family-level systematics of Laniatores (the armored harvestmen), the basally branching family Phalangodidae presently bears a disjunct and irregular distribution, attributed to the fragmentation of Pangea. One of the curious lineages assigned to Phalangodidae is the monotypic Israeli genus Haasus, the only Laniatores species that occurs in Israel, and whose presence in the Levant has been inferred to result from biogeographic connectivity with Eurasia. Recent surveys of Israeli caves have also yielded a new troglobitic morphospecies of Haasus. Here, we describe this new species as Haasus naasane sp. nov. So as to test the biogeographic affinity of Haasus, we sequenced DNA from both species and RNA from Haasus naasane sp. nov., to assess their phylogenetic placement. Our results showed that the new species is clearly closely related to Haasus judaeus, but Haasus itself is unambiguously nested within the largely Afrotropical family Pyramidopidae. In addition, the Japanese ‘phalangodid’ Proscotolemon sauteri was recovered as nested within the Southeast Asian family Petrobunidae. Phylogenomic placement of Haasus naasane sp. nov. in a 1550-locus matrix indicates that Pyramidopidae has an unstable position in the tree of Laniatores, with alternative partitioning of the matrix recovering high nodal support for mutually exclusive tree topologies. Exploration of phylogenetic signal showed the cause of this instability to be a considerable conflict between partitions, suggesting that the basal phylogeny of Laniatores may not yet be stable to addition of taxa. We transfer Haasus to Pyramidopidae (new familial assignment). Additionally, we transfer Proscotolemon to the family Petrobunidae (new familial assignment). Future studies on basal Laniatores phylogeny should emphasise the investigation of small-bodied and obscure groups that superficially resemble Phalangodidae.

Additional keywords: Assamioidea, Grassatores, Haasus, Petrobunidae, Phalangodidae, Proscotolemon, Pyramidopidae.


References

Aberer, A. J., Kobert, K., and Stamatakis, A. (2014). ExaBayes: massively parallel Bayesian tree inference for the whole-genome era. Molecular Biology and Evolution 31, 2553–2556.
ExaBayes: massively parallel Bayesian tree inference for the whole-genome era.Crossref | GoogleScholarGoogle Scholar | 25135941PubMed |

Altenhoff, A. M., and Dessimoz, C. (2009). Phylogenetic and functional assessment of orthologs inference projects and methods. PLoS Computational Biology 5, e1000262.
Phylogenetic and functional assessment of orthologs inference projects and methods.Crossref | GoogleScholarGoogle Scholar | 19148271PubMed |

Altenhoff, A. M., Gil, M., Gonnet, G. H., and Dessimoz, C. (2013). Inferring hierarchical orthologous groups from orthologous gene pairs. PLoS One 8, e53786.
Inferring hierarchical orthologous groups from orthologous gene pairs.Crossref | GoogleScholarGoogle Scholar | 23451112PubMed |

Avni, Y., Filin S., and Zilberman E. (2012). The evolution of Nahal Ze’elim fan and recommendations for the emplacement of new infrastructures in the fan area [in Hebrew], Geological Survery of Israel Report GSI/3/2012, 52 p.

Ballesteros, J. A., and Hormiga, G. (2016). A new orthology assessment method for phylogenomic data: unrooted phylogenetic orthology. Molecular Biology and Evolution 33, 2117–2134.
A new orthology assessment method for phylogenomic data: unrooted phylogenetic orthology.Crossref | GoogleScholarGoogle Scholar | 27189539PubMed |

Boyer, S. L., Clouse, R. M., Benavides, L. R., Sharma, P., Schwendinger, P. J., Karunarathna, I., and Giribet, G. (2007). Biogeography of the world: a case study from cyphophthalmid Opiliones, a globally distributed group of arachnids. Journal of Biogeography 34, 2070–2085.
Biogeography of the world: a case study from cyphophthalmid Opiliones, a globally distributed group of arachnids.Crossref | GoogleScholarGoogle Scholar |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 10742046PubMed |

Cruz-López, J. A., Proud, D. N., and Pérez-González, A. (2016). When troglomorphism dupes taxonomists: morphology and molecules reveal the first pyramidopid harvestman (Arachnida, Opiliones, Pyramidopidae) from the New World. Zoological Journal of the Linnean Society 177, 602–620.
When troglomorphism dupes taxonomists: morphology and molecules reveal the first pyramidopid harvestman (Arachnida, Opiliones, Pyramidopidae) from the New World.Crossref | GoogleScholarGoogle Scholar |

Dequeiroz, A., and Gatesy, J. (2007). The supermatrix approach to systematics. Trends in Ecology & Evolution 22, 34–41.
The supermatrix approach to systematics.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214–218.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |

Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.
Relaxed phylogenetics and dating with confidence.Crossref | GoogleScholarGoogle Scholar | 16683862PubMed |

Dunlop, J. A., Anderson, L. I., Kerp, H., and Hass, H. (2003a). Preserved organs of Devonian harvestmen. Nature 425, 916.
Preserved organs of Devonian harvestmen.Crossref | GoogleScholarGoogle Scholar | 14586459PubMed |

Dunlop, J., Anderson, L., Kerp, H., and Hass, H. (2003b). A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. Transactions of the Royal Society of Edinburgh. Earth Sciences 94, 341–354.
A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland.Crossref | GoogleScholarGoogle Scholar |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |

Edwards, S. V. (2016). Phylogenomic subsampling: a brief review. Zoologica Scripta 45, 63–74.
Phylogenomic subsampling: a brief review.Crossref | GoogleScholarGoogle Scholar |

Fernández, R., Sharma, P. P., Tourinho, A. L., and Giribet, G. (2017). The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics. Proceedings of the Royal Society B: Biological Sciences 284, 20162340.
The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics.Crossref | GoogleScholarGoogle Scholar | 28228511PubMed |

Feuda, R., Dohrmann, M., Pett, W., Philippe, H., Rota-Stabelli, O., Lartillot, N., Worheide, G., and Pisani, D. (2017). Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Current Biology 27, 3864–3870.e4.
Improved modeling of compositional heterogeneity supports sponges as sister to all other animals.Crossref | GoogleScholarGoogle Scholar | 29199080PubMed |

Frumkin, A., Langford, B., and Porat, R. (2017). The Judean Desert: the major hypogene cave region of the southern Levant. In ‘Hypogene Karst Regions and Caves of the World’. (Eds A. Klimchouk, A. N. Palmer, J. De Waele, A. S. Auler, and P. Audra.) pp. 463–477. (Springer: Cham, Switzerland.)

Frumkin, A., Aharon, S., Davidovich, U., Langford, B., Negev, Y., Ullman, M., Vaks, A., Ya’aran, S., and Zissu, B. (2018). Old and recent processes in a warm and humid desert hypogene cave: ‘A’rak Na’asane, Israel. International Journal of Speleology 47, 307–321.
Old and recent processes in a warm and humid desert hypogene cave: ‘A’rak Na’asane, Israel.Crossref | GoogleScholarGoogle Scholar |

Garwood, R. J., Dunlop, J. A., Giribet, G., and Sutton, M. D. (2011). Anatomically modern carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones. Nature Communications 2, 444.
Anatomically modern carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones.Crossref | GoogleScholarGoogle Scholar | 21863011PubMed |

Garwood, R. J., Sharma, P. P., Dunlop, J. A., and Giribet, G. (2014). A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development. Current Biology 24, 1017–1023.
A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development.Crossref | GoogleScholarGoogle Scholar | 24726154PubMed |

Gatesy, J., and Springer, M. S. (2014). Phylogenetic analysis at deep timescales: unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Molecular Phylogenetics and Evolution 80, 231–266.
Phylogenetic analysis at deep timescales: unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum.Crossref | GoogleScholarGoogle Scholar | 25152276PubMed |

Giribet, G., and Boyer, S. (2002). A cladistic analysis of the cyphophthalmid genera (Opiliones, Cyphophthalmi). The Journal of Arachnology 30, 110–128.
A cladistic analysis of the cyphophthalmid genera (Opiliones, Cyphophthalmi).Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Kury, A. B. (2007). Phylogeny and biogeography. In ‘Harvestmen: the biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado, and G. Giribet.) pp. 62–87. (Harvard University Press: Cambridge, MA, USA.)

Giribet, G., Rambla, M., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1999). Phylogeny of the arachnid order Opiliones (Arthropoda) inferred from a combined approach of complete 18S and partial 28S ribosomal DNA sequences and morphology. Molecular Phylogenetics and Evolution 11, 296–307.
Phylogeny of the arachnid order Opiliones (Arthropoda) inferred from a combined approach of complete 18S and partial 28S ribosomal DNA sequences and morphology.Crossref | GoogleScholarGoogle Scholar | 10191074PubMed |

Giribet, G., Edgecombe, G. D., Wheeler, W. C., and Babbitt, C. (2002). Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18, 5–70.
Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data.Crossref | GoogleScholarGoogle Scholar | 14552352PubMed |

Giribet, G., Vogt, L., González, A. P., Sharma, P., and Kury, A. B. (2010). A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 26, 408–437.
A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Sharma, P. P., Benavides, L. R., Boyer, S. L., Clouse, R. M., de Bivort, B. L., Dimitrov, D., Kawauchi, G. Y., Murienne, J., and Schwendinger, P. J. (2012). Evolutionary and biogeographical history of an ancient and global group of arachnids (Arachnida: Opiliones: Cyphophthalmi) with a new taxonomic arrangement. Biological Journal of the Linnean Society. Linnean Society of London 105, 92–130.
Evolutionary and biogeographical history of an ancient and global group of arachnids (Arachnida: Opiliones: Cyphophthalmi) with a new taxonomic arrangement.Crossref | GoogleScholarGoogle Scholar |

Gouy, M., Guindon, S., and Gascuel, O. (2010). SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27, 221–224.
SeaView Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building.Crossref | GoogleScholarGoogle Scholar | 19854763PubMed |

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., Di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., Friedman, N., and Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29, 644–652.
Full-length transcriptome assembly from RNA-Seq data without a reference genome.Crossref | GoogleScholarGoogle Scholar | 21572440PubMed |

Grünewald, S., Spillner, A., Bastkowski, S., Bogershausen, A., and Moulton, V. (2013). SuperQ: computing supernetworks from quartets. IEEE/ACM Transactions on Computational Biology and Bioinformatics 10, 151–160.
SuperQ: computing supernetworks from quartets.Crossref | GoogleScholarGoogle Scholar | 23702551PubMed |

Hedin, M., and Thomas, S. M. (2010). Molecular systematics of eastern North American Phalangodidae (Arachnida: Opiliones: Laniatores), demonstrating convergent morphological evolution in caves. Molecular Phylogenetics and Evolution 54, 107–121.
Molecular systematics of eastern North American Phalangodidae (Arachnida: Opiliones: Laniatores), demonstrating convergent morphological evolution in caves.Crossref | GoogleScholarGoogle Scholar | 19699807PubMed |

Hedin, M., Starrett, J., Akhter, S., Schönhofer, A. L., and Shultz, J. W. (2012). Phylogenomic resolution of Paleozoic divergences in harvestmen (Arachnida, Opiliones) via analysis of next-generation transcriptome data. PLoS One 7, e42888.
Phylogenomic resolution of Paleozoic divergences in harvestmen (Arachnida, Opiliones) via analysis of next-generation transcriptome data.Crossref | GoogleScholarGoogle Scholar | 22936998PubMed |

Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., and Vinh, L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522.
UFBoot2: improving the ultrafast bootstrap approximation.Crossref | GoogleScholarGoogle Scholar | 29077904PubMed |

Hosner, P. A., Faircloth, B. C., Glenn, T. C., Braun, E. L., and Kimball, R. T. (2016). Avoiding missing data biases in phylogenomic inference: an empirical study in the landfowl (Aves: Galliformes). Molecular Biology and Evolution 33, 1110–1125.
Avoiding missing data biases in phylogenomic inference: an empirical study in the landfowl (Aves: Galliformes).Crossref | GoogleScholarGoogle Scholar | 26715628PubMed |

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar | 28481363PubMed |

Kocot, K. M., Struck, T. H., Merkel, J., Waits, D. S., Todt, C., Brannock, P. M., Weese, D. A., Cannon, J. T., Moroz, L. L., Lieb, B., and Halanych, K. M. (2016). Phylogenomics of Lophotrochozoa with consideration of systematic error. Systematic Biology 151, syw079–syw27.
Phylogenomics of Lophotrochozoa with consideration of systematic error.Crossref | GoogleScholarGoogle Scholar |

Kozlov, A. M., Aberer, A. J., and Stamatakis, A. (2015). ExaML version 3: a tool for phylogenomic analyses on supercomputers. Bioinformatics 31, 2577–2579.
ExaML version 3: a tool for phylogenomic analyses on supercomputers.Crossref | GoogleScholarGoogle Scholar | 25819675PubMed |

Kück, P., and Struck, T. H. (2014). BaCoCa: a heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Molecular Phylogenetics and Evolution 70, 94–98.
BaCoCa: a heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions.Crossref | GoogleScholarGoogle Scholar | 24076250PubMed |

Laumer, C. E., Gruber-Vodicka, H., Hadfield, M. G., Pearse, V. B., Riesgo, A., Marioni, J. C., and Giribet, G. (2018). Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias. eLife 7, e36278.
Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias.Crossref | GoogleScholarGoogle Scholar | 30373720PubMed |

Linkem, C. W., Minin, V. N., and Leaché, A. D. (2016). Detecting the anomaly zone in species trees and evidence for a misleading signal in higher-level skink phylogeny (Squamata: Scincidae). Systematic Biology 65, 465–477.
Detecting the anomaly zone in species trees and evidence for a misleading signal in higher-level skink phylogeny (Squamata: Scincidae).Crossref | GoogleScholarGoogle Scholar | 26738927PubMed |

Minh, B. Q., Nguyen, M. A. T., and Haeseler Von, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188–1195.
Ultrafast approximation for phylogenetic bootstrap.Crossref | GoogleScholarGoogle Scholar | 23418397PubMed |

Mirarab, S., and Warnow, T. (2015). ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31, i44–i52.
ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes.Crossref | GoogleScholarGoogle Scholar | 26072508PubMed |

Mor, D. (1993). A time-table for the Levant volcanic province, according to K-Ar dating in the Golan heights, Israel. Journal of African Earth Sciences 16, 223–234.
A time-table for the Levant volcanic province, according to K-Ar dating in the Golan heights, Israel.Crossref | GoogleScholarGoogle Scholar |

Murphree, C. S. (1988). Morphology of the dorsal integument of 10 opilionid species (Arachnida, Opiliones). The Journal of Arachnology 16, 237–252.

Narechania, A., Baker, R. H., Sit, R., Kolokotronis, S.-O., DeSalle, R., and Planet, P. J. (2012). Random addition concatenation analysis: a novel approach to the exploration of phylogenomic signal reveals strong agreement between core and shell genomic partitions in the cyanobacteria. Genome Biology and Evolution 4, 30–43.
Random addition concatenation analysis: a novel approach to the exploration of phylogenomic signal reveals strong agreement between core and shell genomic partitions in the cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 22094860PubMed |

Nguyen, L.-T., Schmidt, H. A., Haeseler von, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar | 25371430PubMed |

Nieselt-Struwe, K., and Haeseler Von, A. (2001). Quartet-mapping, a generalization of the likelihood-mapping procedure. Molecular Biology and Evolution 18, 1204–1219.
Quartet-mapping, a generalization of the likelihood-mapping procedure.Crossref | GoogleScholarGoogle Scholar | 11420361PubMed |

Oberski, J. T., Sharma, P. P., Jay, K. R., Coblens, M. J., Lemon, K. A., Johnson, J. E., and Boyer, S. L. (2018). A dated molecular phylogeny of mite harvestmen (Arachnida: Opiliones: Cyphophthalmi) elucidates ancient diversification dynamics in the Australian Wet Tropics. Molecular Phylogenetics and Evolution 127, 813–822.
A dated molecular phylogeny of mite harvestmen (Arachnida: Opiliones: Cyphophthalmi) elucidates ancient diversification dynamics in the Australian Wet Tropics.Crossref | GoogleScholarGoogle Scholar | 29935300PubMed |

Parks, M. B., Wickett, N. J., and Alverson, A. J. (2018). Signal, uncertainty, and conflict in phylogenomic data for a diverse lineage of microbial eukaryotes (diatoms, Bacillariophyta). Molecular Biology and Evolution 35, 80–93.
Signal, uncertainty, and conflict in phylogenomic data for a diverse lineage of microbial eukaryotes (diatoms, Bacillariophyta).Crossref | GoogleScholarGoogle Scholar | 29040712PubMed |

Pease, J. B., Brown, J. W., Walker, J. F., Hinchliff, C. E., and Smith, S. A. (2018). Quartet sampling distinguishes lack of support from conflicting support in the green plant tree of life. American Journal of Botany 105, 385–403.
Quartet sampling distinguishes lack of support from conflicting support in the green plant tree of life.Crossref | GoogleScholarGoogle Scholar | 29746719PubMed |

Rambaut, A., and Drummond, A. J. (2009). Tracer v. 1.7. Program and documentation. Available at http://tree.bio.ed.ac.uk/software/tracer/ [verified 10 July 2018].

Richart, C. H., Hayashi, C. Y., and Hedin, M. (2016). Phylogenomic analyses resolve an ancient trichotomy at the base of Ischyropsalidoidea (Arachnida, Opiliones) despite high levels of gene tree conflict and unequal minority resolution frequencies. Molecular Phylogenetics and Evolution 95, 171–182.
Phylogenomic analyses resolve an ancient trichotomy at the base of Ischyropsalidoidea (Arachnida, Opiliones) despite high levels of gene tree conflict and unequal minority resolution frequencies.Crossref | GoogleScholarGoogle Scholar | 26691642PubMed |

Roewer, C. F. (1949). Uber Phalangodiden I. Senckenbergiana 30, 11–61.

Rokas, A. (2005). More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Molecular Biology and Evolution 22, 1337–1344.
More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy.Crossref | GoogleScholarGoogle Scholar | 15746014PubMed |

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Roure, B., Baurain, D., and Philippe, H. (2013). Impact of missing data on phylogenies inferred from empirical phylogenomic data sets. Molecular Biology and Evolution 30, 197–214.
Impact of missing data on phylogenies inferred from empirical phylogenomic data sets.Crossref | GoogleScholarGoogle Scholar | 22930702PubMed |

Salichos, L., and Rokas, A. (2013). Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497, 327–331.
Inferring ancient divergences requires genes with strong phylogenetic signals.Crossref | GoogleScholarGoogle Scholar | 23657258PubMed |

Schmidt, S. M., Buenavente, P. A. C., Blatchley, D. D., Diesmos, A. C., Diesmos, M. L., General, D. E. M., Mohagan, A. B., Mohagan, D. J., Clouse, R. M., and Sharma, P. P. (2019). A new species of Tithaeidae (Arachnida: Opiliones: Laniatores) from Mindanao reveals contemporaneous colonization of the Philippines by Sunda Shelf opiliofauna. Invertebrate Systematics 33, 237–251.
A new species of Tithaeidae (Arachnida: Opiliones: Laniatores) from Mindanao reveals contemporaneous colonization of the Philippines by Sunda Shelf opiliofauna.Crossref | GoogleScholarGoogle Scholar |

Schwentner, M., Combosch, D. J., Nelson, J. P., and Giribet, G. (2017). A phylogenomic solution to the origin of insects by resolving Crustacean–Hexapod relationships. Current Biology 27, 1818–1824.e5.
A phylogenomic solution to the origin of insects by resolving Crustacean–Hexapod relationships.Crossref | GoogleScholarGoogle Scholar | 28602656PubMed |

Segev, A., Schattner, U., and Lyakhovsky, V. (2011). Middle-Late Eocene structure of the southern Levant continental margin—Tectonic motion versus global sea-level change. Tectonophysics 499, 165–177.

Sharma, P., and Giribet, G. (2009). Sandokanid phylogeny based on eight molecular markers: the evolution of a southeast Asian endemic family of Laniatores (Arachnida, Opiliones). Molecular Phylogenetics and Evolution 52, 432–447.
Sandokanid phylogeny based on eight molecular markers: the evolution of a southeast Asian endemic family of Laniatores (Arachnida, Opiliones).Crossref | GoogleScholarGoogle Scholar | 19324096PubMed |

Sharma, P. P., and Giribet, G. (2011). The evolutionary and biogeographic history of the armoured harvestmen–Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebrate Systematics 25, 106–142.
The evolutionary and biogeographic history of the armoured harvestmen–Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida).Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., and Giribet, G. (2014). A revised dated phylogeny of the arachnid order Opiliones. Frontiers in Genetics 5, 255.
A revised dated phylogeny of the arachnid order Opiliones.Crossref | GoogleScholarGoogle Scholar | 25120562PubMed |

Sharma, P. P., Prieto, C., and Giribet, G. (2011). A new family of Laniatores (Arachnida: Opiliones) from the Afrotropics. Invertebrate Systematics 25, 143–154.
A new family of Laniatores (Arachnida: Opiliones) from the Afrotropics.Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., Kaluziak, S. T., Perez-Porro, A. R., Gonzalez, V. L., Hormiga, G., Wheeler, W. C., and Giribet, G. (2014). Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Molecular Biology and Evolution 31, 2963–2984.
Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal.Crossref | GoogleScholarGoogle Scholar | 25107551PubMed |

Sharma, P. P., Fernández, R., Esposito, L. A., Gonzalez-Santillan, E., and Monod, L. (2015). Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal. Proceedings. Biological Sciences 282, 20142953.
Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal.Crossref | GoogleScholarGoogle Scholar | 25948691PubMed |

Sharma, P. P., Santiago, M. A., Kriebel, R., Lipps, S. M., Buenavente, P. A. C., Diesmos, A. C., Janda, M., Boyer, S. L., Clouse, R. M., and Wheeler, W. C. (2017). A multilocus phylogeny of Podoctidae (Arachnida, Opiliones, Laniatores) and parametric shape analysis reveal the disutility of subfamilial nomenclature in armored harvestman systematics. Molecular Phylogenetics and Evolution 106, 164–173.
A multilocus phylogeny of Podoctidae (Arachnida, Opiliones, Laniatores) and parametric shape analysis reveal the disutility of subfamilial nomenclature in armored harvestman systematics.Crossref | GoogleScholarGoogle Scholar | 27664345PubMed |

Shen, X.-X., Hittinger, C. T., and Rokas, A. (2017). Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nature Ecology & Evolution 1, 0126.
Contentious relationships in phylogenomic studies can be driven by a handful of genes.Crossref | GoogleScholarGoogle Scholar |

Shultz, J. W., and Regier, J. C. (2001). Phylogenetic analysis of Phalangida (Arachnida, Opiliones) using two nuclear protein-encoding genes supports monophyly of Palpatores. The Journal of Arachnology 29, 189–200.
Phylogenetic analysis of Phalangida (Arachnida, Opiliones) using two nuclear protein-encoding genes supports monophyly of Palpatores.Crossref | GoogleScholarGoogle Scholar |

Simmons, M. P., and Gatesy, J. (2015). Coalescence vs. concatenation: sophisticated analyses vs. first principles applied to rooting the angiosperms. Molecular Phylogenetics and Evolution 91, 98–122.
Coalescence vs. concatenation: sophisticated analyses vs. first principles applied to rooting the angiosperms.Crossref | GoogleScholarGoogle Scholar | 26002829PubMed |

Song, S., Liu, L., Edwards, S. V., and Wu, S. (2012). Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proceedings of the National Academy of Sciences of the United States of America 109, 14942–14947.
Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model.Crossref | GoogleScholarGoogle Scholar | 22930817PubMed |

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758–771.
A rapid bootstrap algorithm for the RAxML web servers.Crossref | GoogleScholarGoogle Scholar | 18853362PubMed |

Starega, W. (1973). Beitrag zur Kenntnis der Weberknechte (Opiliones) des Nahen Ostens. Annales Zoologici 30, 129–153.

Steinitz, G., and Bartov, Y. (1992). The Miocene–Pleistocene history of the Dead Sea segment of the Rift in light of K-Ar ages of basalts. Israel Journal of Earth Sciences 38, 199–208.

Tonini, J., Moore, A., Stern, D., Shcheglovitova, M., and Ortí, G. (2015). Concatenation and species tree methods exhibit statistically indistinguishable accuracy under a range of simulated conditions. PLoS Currents 1, 1–16.
Concatenation and species tree methods exhibit statistically indistinguishable accuracy under a range of simulated conditions.Crossref | GoogleScholarGoogle Scholar |

Ubick, D. (2007). Phalangodidae Simon, 1879. In ‘Harvestmen: the biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado, and G. Giribet.) pp. 217–221. (Harvard University Press: Cambridge, MA, USA.)

Wiens, J. J. (2006). Missing data and the design of phylogenetic analyses. Journal of Biomedical Informatics 39, 34–42.
Missing data and the design of phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 15922672PubMed |

Wiens, J. J., and Tiu, J. (2012). Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling. PLoS One 7, e42925.
Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling.Crossref | GoogleScholarGoogle Scholar | 22900065PubMed |

Zhang, C., Zhang, F., and Sharma, P. P. (2018). Two new species of Petrobunus from China (Opiliones: Laniatores: Petrobunidae). Zootaxa 4524, 51–64.
Two new species of Petrobunus from China (Opiliones: Laniatores: Petrobunidae).Crossref | GoogleScholarGoogle Scholar | 30486128PubMed |