Combining morphological and molecular data resolves the phylogeny of Squilloidea (Crustacea : Malacostraca)
Cara Van Der Wal A B E , Shane T. Ahyong B C , Simon Y. W. Ho A , Luana S. F. Lins D and Nathan Lo AA School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
B Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2000, Australia.
C School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW 2052, Australia.
D School of Biological Sciences and Center for Reproductive Biology, Washington State University, 100 Dairy Road, Pullman, WA 99164, USA.
E Corresponding author. Email: cara.vanderwal@sydney.edu.au
Invertebrate Systematics 33(1) 89-100 https://doi.org/10.1071/IS18035
Submitted: 10 April 2018 Accepted: 20 July 2018 Published: 5 February 2019
Abstract
The mantis shrimp superfamily Squilloidea, with over 185 described species, is the largest superfamily in the crustacean order Stomatopoda. To date, phylogenetic relationships within this superfamily have been comprehensively analysed using morphological data, with six major generic groupings being recovered. Here, we infer the phylogeny of Squilloidea using a combined dataset comprising 75 somatic morphological characters and four molecular markers. Nodal support is low when the morphological and molecular datasets are analysed separately but improves substantially when combined in a total-evidence phylogenetic analysis. We obtain a well resolved and strongly supported phylogeny that is largely congruent with previous estimates except that the Anchisquilloides-group, rather than the Meiosquilla-group, is the earliest-branching lineage in Squilloidea. The splits among the Anchisquilloides- and Meiosquilla-groups are followed by those of the Clorida-, Harpiosquilla-, Squilla- and Oratosquilla-groups. Most of the generic groups are recovered as monophyletic, with the exception of the Squilla- and Oratosquilla-groups. However, many genera within the Oratosquilla-group are not recovered as monophyletic. Further exploration with more extensive molecular sampling will be needed to resolve relationships within the Oratosquilla-group and to investigate the adaptive radiation of squilloids. Overall, our results demonstrate the merit of combining morphological and molecular datasets for resolving phylogenetic relationships.
Additional keywords: mantis shrimp, molecular phylogeny, morphological phylogeny, Stomatopoda, total-evidence analysis.
References
Abelló, P., and Martin, P. (1993). Fishery dynamics of the mantis shrimp Squilla mantis (Crustacea: Stomatopoda) population off the Ebro delta (northwestern Mediterranean). Fisheries Research 16, 131–145.| Fishery dynamics of the mantis shrimp Squilla mantis (Crustacea: Stomatopoda) population off the Ebro delta (northwestern Mediterranean).Crossref | GoogleScholarGoogle Scholar |
Ahyong, S. T. (1997). Phylogenetic analysis of the Stomatopoda (Malacostraca). Journal of Crustacean Biology 17, 695–715.
| Phylogenetic analysis of the Stomatopoda (Malacostraca).Crossref | GoogleScholarGoogle Scholar |
Ahyong, S. T. (2000). Redescription of Squilla fabricii Holthuis, 1941 (Crustacea: Stomatopoda), and its transfer to Oratosquilla Manning, 1968. Proceedings of the Biological Society of Washington 113, 926–930.
Ahyong, S. T. (2001). Revision of the Australian stomatopod Crustacea. Records of the Australian Museum 26, 300–310.
| Revision of the Australian stomatopod Crustacea.Crossref | GoogleScholarGoogle Scholar |
Ahyong, S. T. (2002a). Stomatopod Crustacea from the Marquesas Islands: results of MUSORSTOM 9. Zoosystema 24, 347–372.
Ahyong, S. T. (2002b). A new species and new records of Stomatopoda from Hawaii. Crustaceana 75, 827–840.
| A new species and new records of Stomatopoda from Hawaii.Crossref | GoogleScholarGoogle Scholar |
Ahyong, S. T. (2005). Phylogenetic analysis of the Squilloidea (Crustacea: Stomatopoda). Invertebrate Systematics 19, 189–208.
| Phylogenetic analysis of the Squilloidea (Crustacea: Stomatopoda).Crossref | GoogleScholarGoogle Scholar |
Ahyong, S. T. (2012). ‘The marine fauna of New Zealand: mantis shrimps (Crustacea: Stomatopoda).’ (National Institute of Water and Atmospheric Research Ltd: Wellington, NZ).
Ahyong, S. T. (2013). Stomatopoda collected primarily by the Philippine AURORA expedition (Crustacea, Squilloidea). In ‘Tropical Deep-Sea Benthos 27’. Mémoires du Muséum national d’Histoire naturelle, Paris. (Eds S. T. Ahyong, T. Y. Chan, L. Corbari, and P. K. L. Ng.) pp. 85–106. (Muséum national d’Histoire naturelle: Paris.)
Ahyong, S. T., and Harling, C. (2000). The phylogeny of the stomatopod Crustacea. Australian Journal of Zoology 48, 607–642.
| The phylogeny of the stomatopod Crustacea.Crossref | GoogleScholarGoogle Scholar |
Ahyong, S. T., and Jarman, S. N. (2009). Stomatopod interrelationships: preliminary results based on analysis of three molecular loci. Arthropod Systematics & Phylogeny 67, 91–98.
Ahyong, S. T., and O’Meally, D. (2004). Phylogeny of the Decapoda reptantia: resolution using three molecular loci and morphology. The Raffles Bulletin of Zoology 52, 673–693.
Ahyong, S. T., Chan, T. Y., and Liao, Y. C. (2000). Oratosquillina manningi, a new species of stomatopod from Taiwan and Australia. Journal of Crustacean Biology 20, 42–47.
| Oratosquillina manningi, a new species of stomatopod from Taiwan and Australia.Crossref | GoogleScholarGoogle Scholar |
Ahyong, S. T., Chan, T. Y., and Liao, Y. C. (2009a). ‘A Catalog of the Mantis Shrimps (Stomatopoda) of Taiwan.’ (National Taiwan Ocean University: Taiwan.)
Ahyong, S. T., Schnabel, K. E., and Maas, E. (2009b). Anomuran phylogeny: new insights from molecular data. In ‘Crustacean Issues. Vol. 18: Decapod Crustacean Phylogenetics’. (Eds J. W. Martin, K. A. Crandall, and D. L. Felder.) pp. 399–414. (CRC Press: Boca Raton, FL.)
Antony, P. J., Dhanya, S., Lyla, P. S., Kurup, B. M., and Khan, S. A. (2010). Ecological role of stomatopods (mantis shrimps) and potential impacts of trawling in a marine ecosystem of the southeast coast of India. Ecological Modelling 221, 2604–2614.
| Ecological role of stomatopods (mantis shrimps) and potential impacts of trawling in a marine ecosystem of the southeast coast of India.Crossref | GoogleScholarGoogle Scholar |
Barber, P. H., and Erdmann, M. V. (2000). Molecular systematics of the Gonodactylidae (Stomatopoda) using mitochondrial cytochrome oxidase c (subunit 1) DNA sequence data. Journal of Crustacean Biology 20, 20–36.
| Molecular systematics of the Gonodactylidae (Stomatopoda) using mitochondrial cytochrome oxidase c (subunit 1) DNA sequence data.Crossref | GoogleScholarGoogle Scholar |
Bieler, R., Mikkelsen, P., Collins, T., Glover, E., González, V., Graf, D., Harper, E., Healy, J., Kawauchi, G., Sharma, P., Staubach, S., Strong, E., Taylor, J., Tëmkin, I., Zardus, J., Clark, S., Guzmán, A., McIntyre, E., Sharp, P., and Giribet, G. (2014). Investigating the Bivalve Tree of Life – an exemplar-based approach combining molecular and novel morphological characters. Invertebrate Systematics 28, 32–115.
| Investigating the Bivalve Tree of Life – an exemplar-based approach combining molecular and novel morphological characters.Crossref | GoogleScholarGoogle Scholar |
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C., Xie, D., Suchard, M., Rambaut, A., and Drummond, A. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
| BEAST 2: a software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar | 24722319PubMed |
Bracken-Grissom, H. D., Ahyong, S. T., Wilkinson, R. D., Feldmann, R. M., Schweitzer, C. E., Breinholt, J. W., Bendall, M., Palero, F., Chan, T. Y., Felder, D. L., Robles, R., Chu, K. H., Tsang, L. M., Kim, D., Martin, J. W., and Crandall, K. A. (2014). The emergence of the lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, Astacidea, Glypheidea, Polychelida). Systematic Biology 63, 457–479.
| The emergence of the lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, Astacidea, Glypheidea, Polychelida).Crossref | GoogleScholarGoogle Scholar | 24562813PubMed |
de Haan, W. (1844). Crustacea. In ‘Fauna Japonica sive descriptio animalium, quae in itinere per Japoniam, jussu et auspiciis superiorum, qui summum in India Batava Imperium tenent, suspecto, annis 1823–1830 collegit, notis, observationibus et adumbrationibus illustravit’. (Ph. F. von Siebold.) plates. 38, 43–46, 48, 51–55, I–N. (Lugduni-Batavorum: Leiden, The Netherlands.)
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
| MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |
Glenner, H., Hansen, A. J., Sorensen, M. V., Ronquist, F., Huelsenbeck, J. P., and Willerslev, E. (2004). Bayesian inference of the metazoan phylogeny: a combined molecular and morphological approach. Current Biology 12, 1828–1832.
Heikkilä, M., Mutanen, M., Wahlberg, N., Sihvonen, P., and Kaila, L. (2015). Elusive ditrysian phylogeny: an account of combining systematized morphology with molecular data (Lepidoptera). BMC Evolutionary Biology 15, 260.
| Elusive ditrysian phylogeny: an account of combining systematized morphology with molecular data (Lepidoptera).Crossref | GoogleScholarGoogle Scholar | 26589618PubMed |
Holthuis, L. B. (1941). The Stomatopoda of the Snellius Expedition. Biological Results of the Snellius Expedition XII. Temminckia 6, 241–294.
Holthuis, L. B., and Manning, R. B. (1969). Stomatopoda. In ‘Arthropoda. Treatise on Invertebrate Paleontology’. (Ed. R. C. Moore.) Part R, 4: 535–552. (Geological Society of America and University of Kansas: Lawrence, KS.)
Hou, Z., Fu, J., and Li, S. (2007). A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution 45, 596–611.
| A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences.Crossref | GoogleScholarGoogle Scholar | 17686635PubMed |
Lanfear, R., Frandsen, P., Wright, A., Senfeld, T., and Calcott, B. (2016). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
Lavery, S., Chan, T. Y., Tam, Y. K., and Chu, K. H. (2004). Phylogenetic relationships and evolutionary history of the shrimp genus Penaeus s.l. derived from mitochondrial DNA. Molecular Phylogenetics and Evolution 31, 39–49.
| Phylogenetic relationships and evolutionary history of the shrimp genus Penaeus s.l. derived from mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 15019607PubMed |
Lee, M., Hugall, A., Lawson, R., and Scanlon, J. (2007). Phylogeny of snakes (Serpentes): combining morphological and molecular data in likelihood, Bayesian and parsimony analyses. Systematics and Biodiversity 5, 371–389.
| Phylogeny of snakes (Serpentes): combining morphological and molecular data in likelihood, Bayesian and parsimony analyses.Crossref | GoogleScholarGoogle Scholar |
Lewis, P. O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50, 913–925.
| A likelihood approach to estimating phylogeny from discrete morphological character data.Crossref | GoogleScholarGoogle Scholar | 12116640PubMed |
Linnaeus, C. (1758). ‘Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Ed. 10, Vol. 1.’ (Laurentii Salvii: Holmiae, Sweden.)
Maddison, D. R., and Maddison, W. P. (2000). ‘MacClade 4: Analysis of Phylogeny and Character Evolution. Version 4.0.’ (Sinauer Associates: Sunderland, MA.)
Manning, R. B. (1968). A revision of the family Squillidae (Crustacea, Stomatopoda), with the description of eight new genera. Bulletin of Marine Science 18, 105–142.
Manning, R. B. (1971). ‘Keys to the Species of Oratosquilla (Crustacea: Stomatopoda), with Descriptions of Two New Species.’ (Smithsonian Institution Press: Washington, DC.)
Manning, R. B. (1977). ‘A monograph of the West African stomatopod Crustacea. Issue 12 of Atlantide report: scientific results of the Danish Expedition to the coasts of tropical West Africa.‘ (Scandinavian Science Press Ltd.: Copenhagen, Denmark.)
Manning, R. B. (1995). Stomatopod Crustacea of Vietnam: the legacy of Raoul Serène. Crustacean Research Special No. 4, 1–339.
Maynou, F., Abello, P., and Sartor, P. (2004). A review of the fisheries biology of the mantis shrimp, Squilla mantis (L., 1758) (Stomatopoda, Squillidae) in the Mediterranean. Crustaceana 77, 1081–1099.
| A review of the fisheries biology of the mantis shrimp, Squilla mantis (L., 1758) (Stomatopoda, Squillidae) in the Mediterranean.Crossref | GoogleScholarGoogle Scholar |
Mokady, O., and Brickner, I. (2001). Host-associated speciation in a coral-inhabiting barnacle. Molecular Biology and Evolution 18, 975–981.
| Host-associated speciation in a coral-inhabiting barnacle.Crossref | GoogleScholarGoogle Scholar | 11371585PubMed |
Mokady, O., Rozenblatt, S., Graur, D., and Loya, Y. (1994). Coral-host specificity of Red Sea Lithophaga bivalves: interspecific and intraspecific variation in 12S mitochondrial ribosomal RNA. Molecular Marine Biology and Biotechnology 3, 158–164.
| 7522832PubMed |
Near, T., Pesavento, J., and Cheng, C. (2003). Mitochondrial DNA, morphology, and the phylogenetic relationships of Antarctic icefishes (Notothenioidei: Channichthyidae). Molecular Phylogenetics and Evolution 28, 87–98.
| Mitochondrial DNA, morphology, and the phylogenetic relationships of Antarctic icefishes (Notothenioidei: Channichthyidae).Crossref | GoogleScholarGoogle Scholar | 12801473PubMed |
Pileggi, L. G., and Mantelatto, F. L. (2010). Molecular phylogeny of the freshwater prawn genus Macrobrachium (Decapoda, Palaemonidae), with emphasis on the relationships among selected American species. Invertebrate Systematics 24, 194–208.
| Molecular phylogeny of the freshwater prawn genus Macrobrachium (Decapoda, Palaemonidae), with emphasis on the relationships among selected American species.Crossref | GoogleScholarGoogle Scholar |
Porter, M. L., Pérez-Losada, M., and Crandall, K. A. (2005). Model-based multi-locus estimation of decapod phylogeny and divergence times. Molecular Phylogenetics and Evolution 37, 355–369.
| Model-based multi-locus estimation of decapod phylogeny and divergence times.Crossref | GoogleScholarGoogle Scholar | 16112880PubMed |
Porter, M. L., Zhang, Y. F., Desai, S., Caldwell, R. L., and Cronin, T. W. (2010). Evolution of anatomical and physiological specialization in the compound eyes of stomatopod crustaceans. The Journal of Experimental Biology 213, 3473–3486.
| Evolution of anatomical and physiological specialization in the compound eyes of stomatopod crustaceans.Crossref | GoogleScholarGoogle Scholar | 20889828PubMed |
Rambaut, A., Drummond, A., Xie, D., Baele, G., and Suchard, M. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901–904.
| Posterior summarization in Bayesian phylogenetics using Tracer 1.7.Crossref | GoogleScholarGoogle Scholar | 29718447PubMed |
Risso, A. (1816). ‘Histoire Naturelle des Crustacés des Environs de Nice.’ (F. G. Levrault: Paris.)
Rokas, A., Krüger, D., and Carroll, S. B. (2005). Animal evolution and the molecular signature of radiations compressed in time. Science 310, 1933–1938.
| Animal evolution and the molecular signature of radiations compressed in time.Crossref | GoogleScholarGoogle Scholar | 16373569PubMed |
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
| MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |
Ruhfel, B., Stevens, P., and Davis, C. (2013). Combined morphological and molecular phylogeny of the clusioid clade (Malpighiales) and the placement of the ancient Rosid Macrofossil Paleoclusia. International Journal of Plant Sciences 174, 910–936.
| Combined morphological and molecular phylogeny of the clusioid clade (Malpighiales) and the placement of the ancient Rosid Macrofossil Paleoclusia.Crossref | GoogleScholarGoogle Scholar |
San Jose, M., Doorenweerd, C., Leblanc, L., Barr, N., Geib, S., and Rubinoff, D. (2018). Incongruence between molecules and morphology: a seven-gene phylogeny of Dacini fruit flies paves the way for reclassification (Diptera: Tephritidae). Molecular Phylogenetics and Evolution 121, 139–149.
| Incongruence between molecules and morphology: a seven-gene phylogeny of Dacini fruit flies paves the way for reclassification (Diptera: Tephritidae).Crossref | GoogleScholarGoogle Scholar | 29224785PubMed |
Schnabel, K. E., Ahyong, S. T., and Maas, E. W. (2011). Galatheoidea are not monophyletic – molecular and morphological phylogeny of the squat lobsters (Decapoda: Anomura) with recognition of a new superfamily. Molecular Phylogenetics and Evolution 58, 157–168.
| Galatheoidea are not monophyletic – molecular and morphological phylogeny of the squat lobsters (Decapoda: Anomura) with recognition of a new superfamily.Crossref | GoogleScholarGoogle Scholar | 21095236PubMed |
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
| RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |
Stephenson, W. (1953). Three new Stomatopoda (Crustacea) from eastern Australia. Australian Journal of Marine and Freshwater Research 4, 201–218.
Van Der Wal, C., and Ahyong, S. T. (2017). Expanding diversity in the mantis shrimps: two new genera from the eastern and western Pacific (Crustacea: Stomatopoda: Squillidae). Nauplius 25, e2017012.
| Expanding diversity in the mantis shrimps: two new genera from the eastern and western Pacific (Crustacea: Stomatopoda: Squillidae).Crossref | GoogleScholarGoogle Scholar |
Van Der Wal, C., Ahyong, S. T., Ho, S. Y. W., and Lo, N. (2017). The evolutionary history of Stomatopoda (Crustacea: Malacostraca) inferred from molecular data. PeerJ 5, e3844.
| The evolutionary history of Stomatopoda (Crustacea: Malacostraca) inferred from molecular data.Crossref | GoogleScholarGoogle Scholar | 28948111PubMed |
Walsh, P. S., Metzger, D. A., and Higuchi, R. (1991). Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10, 506–513.
| 1867860PubMed |
Wardiatno, Y., and Mashar, A. (2010). Biological information on the mantis shrimp, Harpiosquilla raphidea (Fabricius 1798) (Stomatopoda, Crustacea) in Indonesia with a highlight of its reproductive aspects. Journal of Tropical Biology & Conservation 7, 65–73.
Wiens, J. (2004). The role of morphological data in phylogeny reconstruction. Systematic Biology 53, 653–661.
| The role of morphological data in phylogeny reconstruction.Crossref | GoogleScholarGoogle Scholar | 15371253PubMed |
Wortley, A., and Scotland, R. (2006). The effect of combining molecular and morphological data in published phylogenetic analyses. Systematic Biology 55, 677–685.
| The effect of combining molecular and morphological data in published phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 16969943PubMed |
Xia, X. (2013). DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution 30, 1720–1728.
| DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution.Crossref | GoogleScholarGoogle Scholar | 23564938PubMed |
Zhang, D. Z., Ding, G., Ge, B. M., Zhang, H. B., and Tang, B. P. (2012). Development and characterization of microsatellite loci of Oratosquilla oratoria (Crustacea: Squillidae). Conservation Genetics Resources 4, 147–150.
| Development and characterization of microsatellite loci of Oratosquilla oratoria (Crustacea: Squillidae).Crossref | GoogleScholarGoogle Scholar |