Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

The ‘Peripatos’ in Eurogondwana? – Lack of evidence that south-east Asian onychophorans walked through Europe

Gonzalo Giribet A F , Rebecca S. Buckman-Young A B , Cristiano Sampaio Costa A C , Caitlin M. Baker A , Ligia R. Benavides A , Michael G. Branstetter D , Savel R. Daniels E and Ricardo Pinto-da-Rocha C
+ Author Affiliations
- Author Affiliations

A Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

B Current address: Department of Integrative Biology, University of Wisconsin – Madison, 250 N. Mills Street, Madison, WI 53706, USA.

C Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão-Travessa 14, n° 321, Cidade Universitária, São Paulo, SP 05508-090, Brazil.

D USDA-ARS Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, USA.

E Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.

F Corresponding author. Email: ggiribet@g.harvard.edu

Invertebrate Systematics 32(4) 842-865 https://doi.org/10.1071/IS18007
Submitted: 29 January 2018  Accepted: 15 April 2018   Published: 16 August 2018

Abstract

Onychophorans, or velvet worms, are cryptic but extremely charismatic terrestrial invertebrates that have often been the subject of interesting biogeographic debate. Despite great interest, a well resolved and complete phylogeny of the group and a reliable chronogram have been elusive due to their broad geographic distribution, paucity of samples, and challenging molecular composition. Here we present a molecular phylogenetic analysis of Onychophora that includes previously unsampled and undersampled lineages and we analyse the expanded dataset using a series of nested taxon sets designed to increase the amount of information available for particular subclades. These include a dataset with outgroups, one restricted to the ingroup taxa, and three others for Peripatopsidae, Peripatidae and Neopatida (= the Neotropical Peripatidae). To explore competing biogeographic scenarios we generate a new time tree for Onychophora using the few available reliable fossils as calibration points. Comparing our results to those of Cyphophthalmi, we reconsider the hypothesis that velvet worms reached Southeast Asia via Eurogondwana, and conclude that a more likely scenario is that they reached Southeast Asia by rafting on the Sibumasu terrane. Our phylogenetic results support the reciprocal monophyly of both families as well as an early division between East and West Gondwana, also in both families, each beginning to diversify between the Permian and the Jurassic. Peripatopsidae clearly supports paraphyly of South Africa with respect to southern South America (Chile) and a sister group relationship of the Southeast Asian/New Guinean Paraperipatus to the Australian/New Zealand taxa. The latter includes a clade that divides between Western Australia and Eastern Australia and two sister clades of trans-Tasman species (one oviparous and one viviparous). This pattern clearly shows that oviparity is secondarily derived in velvet worms. Peripatidae finds a sister group relationship between the Southeast Asian Eoperipatus and the West Gondwanan clade, which divides into the African Mesoperipatus and Neopatida. The latter shows a well supported split between the Pacific Oroperipatus (although it is unclear whether they form one or two clades) and a sister clade that includes the members of the genera Peripatus, Epiperipatus, Macroperipatus and representatives of the monotypic genera Cerradopatus, Plicatoperipatus and Principapillatus. However, Peripatus, Epiperipatus and Macroperipatus are not monophyletic, and all the species from the monotypic genera are related to geographically close species. The same goes for the type species of Macroperipatus (from Trinidad, and sister group to other Trinidad and Tobago species of Epiperipatus) and Epiperipatus (from French Guiana, and related to other Guyana shield species of Epiperipatus and Peripatus). Geographic structure within Neopatida is largely obscured by an unresolved backbone, but many well supported instances of generic non-monophyly challenge the current taxonomic framework, which has often relied on anatomical characters that are untested phylogenetically.

Additional keywords: biogeography, Neopatida, Onychophora, Peripatidae, Peripatopsidae, Peripatus, phylogeny.


References

Ali, J. R., and Aitchison, J. C. (2008). Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Science Reviews 88, 145–166.
Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma).Crossref | GoogleScholarGoogle Scholar |

Allwood, J., Gleeson, D., Mayer, G., Daniels, S., Beggs, J. R., and Buckley, T. R. (2010). Support for vicariant origins of the New Zealand Onychophora. Journal of Biogeography 37, 669–681.
Support for vicariant origins of the New Zealand Onychophora.Crossref | GoogleScholarGoogle Scholar |

Baer, A., and Mayer, G. (2012). Comparative anatomy of slime glands in Onychophora (velvet worms). Journal of Morphology 273, 1079–1088.
Comparative anatomy of slime glands in Onychophora (velvet worms).Crossref | GoogleScholarGoogle Scholar |

Barquero-González, J. P., Acosta-Chaves, V. J., Sotela, M. L., Villalobos Brenes, F., and Morera-Brenes, B. (2016). Evidencia fotográfica de especies desconocidas de onicóforos (Onychophora: Peripatidae) de Costa Rica. Cuadernos de Investigación UNED 8, 139–147.
Evidencia fotográfica de especies desconocidas de onicóforos (Onychophora: Peripatidae) de Costa Rica.Crossref | GoogleScholarGoogle Scholar |

Bastawade, D. B. (1992). First report of an arachnid order Cyphophthalmi (da) from India in Arunachal Pradesh. Journal of the Bombay Natural History Society 89, 268–269.

Blanchard, É. (1847). Recherches sur l’organisation des Vers. Annales des Sciences Naturelles [3e Série] 8, 119–149.

Bouckaert, R. R., and Drummond, A. J. (2017). bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evolutionary Biology 17, 42.
bModelTest: Bayesian phylogenetic site model averaging and model comparison.Crossref | GoogleScholarGoogle Scholar |

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., and Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
BEAST 2: a software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar |

Bouvier, E.-L. (1898). Note préliminaire sur la distribution géographique et l’évolution des Péripates. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 126, 1358–1361.

Bouvier, E.-L. (1899a). Contributions a l’histoire des Péripates américains. Bulletin de la Société Entomologique de France 68, 385–450.

Bouvier, E.-L. (1899b). Nouvelles observations sur les Péripates américains. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 129, 1029–1031.
Nouvelles observations sur les Péripates américains.Crossref | GoogleScholarGoogle Scholar |

Bouvier, E.-L. (1900). Observations nouvelles sur le Peripatus [Onych.] Bulletin de la Société Entomologique de France 1900, 394–395.

Bouvier, E.-L. (1901). Nouveaux Péripates de la Bolivie. Bulletin du Muséum National d’Histoire Naturelle 7, 168–169.

Bouvier, E.-L. (1902). Le Peripatus ecuadorensis. Bulletin de la Société Philomathique de Paris [Serie 9]. 4, 53–62.

Bouvier, E.-L. (1904). Peripatus Belli (espèce nouvelle de l’Equateur). Bulletin du Muséum National d’Histoire Naturelle 10, 56–57.

Braband, A., Podsiadlowski, L., Cameron, S. L., Daniels, S., and Mayer, G. (2010). Extensive duplication events account for multiple control regions and pseudo-genes in the mitochondrial genome of the velvet worm Metaperipatus inae (Onychophora, Peripatopsidae). Molecular Phylogenetics and Evolution 57, 293–300.
Extensive duplication events account for multiple control regions and pseudo-genes in the mitochondrial genome of the velvet worm Metaperipatus inae (Onychophora, Peripatopsidae).Crossref | GoogleScholarGoogle Scholar |

Brues, C. T. (1913). Preliminary descriptions of two new forms of Peripatus from Haiti. Bulletin of the Museum of Comparative Zoölogy at Harvard College 54, 519–521.

Brues, C. T. (1914). A new Peripatus from Colombia. Bulletin of the Museum of Comparative Zoölogy at Harvard College 58, 375–382.

Brues, C. T. (1917). A new species of Peripatus from the mountains of northern Peru. Bulletin of the Museum of Comparative Zoölogy at Harvard College 61, 383–387.

Brues, C. T. (1925). Notes on Neotropical Onycophora. Psyche (Cambridge, Massachusetts) 32, 159–165.
Notes on Neotropical Onycophora.Crossref | GoogleScholarGoogle Scholar |

Brues, C. T. (1935). Varietal forms of Peripatus in Haiti. Psyche (Cambridge, Massachusetts) 42, 58–63.
Varietal forms of Peripatus in Haiti.Crossref | GoogleScholarGoogle Scholar |

Brues, C. T. (1939). Additional records of Onychophora from the island of Haiti. Psyche (Cambridge, Massachusetts) 46, 36–37.
Additional records of Onychophora from the island of Haiti.Crossref | GoogleScholarGoogle Scholar |

Camerano, L. (1897a). Nuova specie di Peripatus raccolta dal Prof. L. Balzan in Bolivia. Annali del Museo civico di storia naturali di Genova 18, 12–15.

Camerano, L. (1897b). Sul Peripatus quitensis Schmarda. Atti della Reale Accademia delle scienze di Torino 32, 395–398.

Camerano, L. (1898). Nuova specie di Peripatus dell’ Ecuador. Atti della Reale Accademia delle scienze di Torino 23, 308–310.

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Chagas-Júnior, A., and Costa, C. S. (2014). Macroperipatus ohausi: redescription and taxonomic notes on its status (Onychophora: Peripatidae). Revista de Biología Tropical 62, 977–985.
Macroperipatus ohausi: redescription and taxonomic notes on its status (Onychophora: Peripatidae).Crossref | GoogleScholarGoogle Scholar |

Chernomor, O., von Haeseler, A., and Minh, B. Q. (2016). Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65, 997–1008.
Terrace aware data structure for phylogenomic inference from supermatrices.Crossref | GoogleScholarGoogle Scholar |

Clark, A. H. (1913). A revision of the American species of Peripatus. Proceedings of the Biological Society of Washington 26, 15–19.

Clark, A. H. (1915). The present distribution of the Onychophora, a group of terrestrial invertebrates. Smithsonian Institution Miscellaneous Collection 65, 1–25.

Clark, A. H. (1937). On some Onychophores from the West Indies and Central America. Proceedings of the United States National Museum 85, 1–3.
On some Onychophores from the West Indies and Central America.Crossref | GoogleScholarGoogle Scholar |

Clouse, R. M., and Giribet, G. (2010). When Thailand was an island – the phylogeny and biogeography of mite harvestmen (Opiliones, Cyphophthalmi, Stylocellidae) in Southeast Asia. Journal of Biogeography 37, 1114–1130.
When Thailand was an island – the phylogeny and biogeography of mite harvestmen (Opiliones, Cyphophthalmi, Stylocellidae) in Southeast Asia.Crossref | GoogleScholarGoogle Scholar |

Clouse, R. M., General, D. M., Diesmos, A. C., and Giribet, G. (2011). An old lineage of Cyphophthalmi (Opiliones) discovered on Mindanao highlights the need for biogeographical research in the Philippines. The Journal of Arachnology 39, 147–153.
An old lineage of Cyphophthalmi (Opiliones) discovered on Mindanao highlights the need for biogeographical research in the Philippines.Crossref | GoogleScholarGoogle Scholar |

Cockerell, T. D. A. (1893). Notes on Peripatus jamaicensis, Grabh. and Ckll. Zoologischer Anzeiger 16, 341–343.

Cockerell, T. D. A. (1908). Monographie des Onychophores by E. L. Bouvier. Science 27, 619–621.
Monographie des Onychophores by E. L. Bouvier.Crossref | GoogleScholarGoogle Scholar |

Colgan, D. J., McLauchlan, A., Wilson, G. D. F., Livingston, S. P., Edgecombe, G. D., Macaranas, J., Cassis, G., and Gray, M. R. (1998). Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46, 419–437.
Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution.Crossref | GoogleScholarGoogle Scholar |

Costa, C. S., and Giribet, G. (2016). Taxonomic notes on Mesoperipatus tholloni (Onychophora: Peripatidae), an elusive velvet worm from Gabon. Breviora 552, 1–10.
Taxonomic notes on Mesoperipatus tholloni (Onychophora: Peripatidae), an elusive velvet worm from Gabon.Crossref | GoogleScholarGoogle Scholar |

Cunha, W. T. R., Santos, R. C. O., Araripe, J., Sampaio, I., Schneider, H., and Rêgo, P. S. (2017). Molecular analyses reveal the occurrence of three new sympatric lineages of velvet worms (Onychophora: Peripatidae) in the eastern Amazon basin. Genetics and Molecular Biology , .
Molecular analyses reveal the occurrence of three new sympatric lineages of velvet worms (Onychophora: Peripatidae) in the eastern Amazon basin.Crossref | GoogleScholarGoogle Scholar |

du Bois-Reymond Marcus, E. (1952). On South American Malacopoda. Boletins da Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Série Zoologia 17, 189–209.

Edgecombe, G. D., Giribet, G., and Wheeler, W. C. (2002). Phylogeny of Henicopidae (Chilopoda: Lithobiomorpha): a combined analysis of morphology and five molecular loci. Systematic Entomology 27, 31–64.
Phylogeny of Henicopidae (Chilopoda: Lithobiomorpha): a combined analysis of morphology and five molecular loci.Crossref | GoogleScholarGoogle Scholar |

Ewing, B., and Green, P. (1998). Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Research 8, 186–194.
Base-calling of automated sequencer traces using Phred. II. Error probabilities.Crossref | GoogleScholarGoogle Scholar |

Ewing, B., Hillier, L., Wendl, M. C., and Green, P. (1998). Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Research 8, 175–185.
Base-calling of automated sequencer traces using Phred. I. Accuracy assessment.Crossref | GoogleScholarGoogle Scholar |

Feijão, P. C., Neiva, L. S., de Azeredo-Espin, A. M., and Lessinger, A. C. (2006). AMiGA: the arthropodan mitochondrial genomes accessible database. Bioinformatics 22, 902–903.
AMiGA: the arthropodan mitochondrial genomes accessible database.Crossref | GoogleScholarGoogle Scholar |

Fernández, R., Laumer, C. E., Vahtera, V., Libro, S., Kaluziak, S., Sharma, P. P., Pérez-Porro, A. R., Edgecombe, G. D., and Giribet, G. (2014). Evaluating topological conflict in centipede phylogeny using transcriptomic data sets. Molecular Biology and Evolution 31, 1500–1513.
Evaluating topological conflict in centipede phylogeny using transcriptomic data sets.Crossref | GoogleScholarGoogle Scholar |

Fernández, R., Edgecombe, G. D., and Giribet, G. (2016). Exploring phylogenetic relationships within Myriapoda and the effects of matrix composition and occupancy on phylogenomic reconstruction. Systematic Biology 65, 871–889.
Exploring phylogenetic relationships within Myriapoda and the effects of matrix composition and occupancy on phylogenomic reconstruction.Crossref | GoogleScholarGoogle Scholar |

Fernández, R., Sharma, P. P., Tourinho, A. L., and Giribet, G. (2017). The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics. Proceedings: Biological Sciences 284, 20162340.
The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.

Friedrich, D. (2015). Beschreibung von fossilen Zwergweberknechten (Opiliones, Cyphophthalmi) durch Nutzung von Lichtmikroskopie und Mikro-Computertomographie. Institut für Biologie.

Fuhrmann, O. (1913). Über einige neue neotropische Peripatus-Arten. Zoologischer Anzeiger 42, 241–248.

Fuhrmann, O. (1915). Über eine neue Peripatus=Art vom Oberlauf des Amazonas. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 36, 277–283.

Garwood, R. J., Dunlop, J. A., Giribet, G., and Sutton, M. D. (2011). Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones. Nature Communications 2, 444.
Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones.Crossref | GoogleScholarGoogle Scholar |

Garwood, R. J., Sharma, P. P., Dunlop, J. A., and Giribet, G. (2014). A new stem-group Palaeozoic harvestman revealed through integration of phylogenetics and development. Current Biology 24, 1017–1023.
A new stem-group Palaeozoic harvestman revealed through integration of phylogenetics and development.Crossref | GoogleScholarGoogle Scholar |

Garwood, R. J., Edgecombe, G. D., Charbonnier, S., Chabard, D., Sotty, D., and Giribet, G. (2016). Carboniferous Onychophora from Montceau-les-Mines, France, and onychophoran terrestrialization. Invertebrate Biology 135, 179–190.
Carboniferous Onychophora from Montceau-les-Mines, France, and onychophoran terrestrialization.Crossref | GoogleScholarGoogle Scholar |

Gillespie, R. (2004). Community assembly through adaptive radiation in Hawaiian spiders. Science 303, 356–359.
Community assembly through adaptive radiation in Hawaiian spiders.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Dunlop, J. A. (2005). First identifiable Mesozoic harvestman (Opiliones: Dyspnoi) from Cretaceous Burmese amber. Proceedings. Biological Sciences 272, 1007–1013.
First identifiable Mesozoic harvestman (Opiliones: Dyspnoi) from Cretaceous Burmese amber.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Wheeler, W. C. (2001). Some unusual small-subunit ribosomal RNA sequences of metazoans. American Museum Novitates 3337, 1–14.
Some unusual small-subunit ribosomal RNA sequences of metazoans.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
First molecular evidence for the existence of a Tardigrada + Arthropoda clade.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Sharma, P. P., and Bastawade, D. B. (2007). A new genus and species of Cyphophthalmi (Arachnida: Opiliones) from the north-eastern states of India. Zoological Journal of the Linnean Society 151, 663–670.
A new genus and species of Cyphophthalmi (Arachnida: Opiliones) from the north-eastern states of India.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Sharma, P. P., Benavides, L. R., Boyer, S. L., Clouse, R. M., de Bivort, B. L., Dimitrov, D., Kawauchi, G. Y., Murienne, J. Y., and Schwendinger, P. J. (2012). Evolutionary and biogeographical history of an ancient and global group of arachnids (Arachnida: Opiliones: Cyphophthalmi) with a new taxonomic arrangement. Biological Journal of the Linnean Society. Linnean Society of London 105, 92–130.
Evolutionary and biogeographical history of an ancient and global group of arachnids (Arachnida: Opiliones: Cyphophthalmi) with a new taxonomic arrangement.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., Boyer, S. L., Baker, C., Fernández, R., Sharma, P. P., de Bivort, B. L., Daniels, S. R., Harvey, M. S., and Griswold, C. E. (2016). A molecular phylogeny of the temperate Gondwanan family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) with biogeographic and taxonomic implications. Zoological Journal of the Linnean Society 178, 523–545.
A molecular phylogeny of the temperate Gondwanan family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) with biogeographic and taxonomic implications.Crossref | GoogleScholarGoogle Scholar |

Gleeson, D. M., Rowell, D. M., Tait, N. N., Briscoe, D. A., and Higgins, A. V. (1998). Phylogenetic relationships among onychophora from Australasia inferred from the mitochondrial cytochrome oxidase subunit I gene. Molecular Phylogenetics and Evolution 10, 237–248.
Phylogenetic relationships among onychophora from Australasia inferred from the mitochondrial cytochrome oxidase subunit I gene.Crossref | GoogleScholarGoogle Scholar |

Gordon, D., Abajian, C., and Green, P. (1998). Consed: a graphical tool for sequence finishing. Genome Research 8, 195–202.
Consed: a graphical tool for sequence finishing.Crossref | GoogleScholarGoogle Scholar |

Gordon, D., Desmarais, C., and Green, P. (2001). Automated finishing with autofinish. Genome Research 11, 614–625.
Automated finishing with autofinish.Crossref | GoogleScholarGoogle Scholar |

Grabham, M., and Cockerell, T. D. A. (1892). Peripatus re-discovered in Jamaica. Nature 46, 514.
Peripatus re-discovered in Jamaica.Crossref | GoogleScholarGoogle Scholar |

Grehan, J. (2001). Biogeography and evolution of the Galapagos: integration of the biological and geological evidence. Biological Journal of the Linnean Society. Linnean Society of London 74, 267–287.
Biogeography and evolution of the Galapagos: integration of the biological and geological evidence.Crossref | GoogleScholarGoogle Scholar |

Grimaldi, D., Engel, M. S., and Nascimbene, P. C. (2002). Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. American Museum Novitates 3361, 1–74.
Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance.Crossref | GoogleScholarGoogle Scholar |

Guilding, L. (1826). Mollusca Caribbaeana. The Zoological Journal 2, 437–449.

Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., Lieber, M., Macmanes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C. N., Henschel, R., LeDuc, R. D., Friedman, N., and Regev, A. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8, 1494–1512.
De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis.Crossref | GoogleScholarGoogle Scholar |

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.

Jeffery, N. W., Oliveira, I. S., Gregory, T. R., Rowell, D. M., and Mayer, G. (2012). Genome size and chromosome number in velvet worms (Onychophora). Genetica 140, 497–504.
Genome size and chromosome number in velvet worms (Onychophora).Crossref | GoogleScholarGoogle Scholar |

Jerez-Jaimes, J. H., and Bernal-Pérez, M. C. (2009). Taxonomía de onicóforos de Santander, Colombia y termogravimetría, calorimetría de barrido diferencial y espectroscopía infrarroja de la secreción adhesiva (Onychophora: Peripatidae). Revista de Biología Tropical 57, 567–588.

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587–589.
ModelFinder: fast model selection for accurate phylogenetic estimates.Crossref | GoogleScholarGoogle Scholar |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar |

Katoh, K., and Standley, D. M. (2014). MAFFT: iterative refinement and additional methods. In ‘Multiple Sequence Alignment Methods’. (Ed. D. Russell.) pp. 131–146. (Humana Press: Totowa, NJ.)

Katoh, K., Kuma, K., Toh, H., and Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33, 511–518.
MAFFT version 5: improvement in accuracy of multiple sequence alignment.Crossref | GoogleScholarGoogle Scholar |

Kuraku, S., Zmasek, C. M., Nishimura, O., and Katoh, K. (2013). aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Research 41, W22–W28.
aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity.Crossref | GoogleScholarGoogle Scholar |

Lacorte, G. A., de Sena Oliveira, I., and Da Fonseca, C. G. (2011a). Phylogenetic relationships among the Epiperipatus lineages (Onychophora: Peripatidae) from the Minas Gerais State, Brazil. Zootaxa 2755, 57–65.

Lacorte, G. A., Oliveira, I. S., and Fonseca, C. G. (2011b). Population structure and demographic inferences concerning the endangered onychophoran species Epiperipatus acacioi (Onychophora: Peripatidae). Genetics and Molecular Research 10, 2775–2785.
Population structure and demographic inferences concerning the endangered onychophoran species Epiperipatus acacioi (Onychophora: Peripatidae).Crossref | GoogleScholarGoogle Scholar |

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–359.
Fast gapped-read alignment with Bowtie 2.Crossref | GoogleScholarGoogle Scholar |

Mahler, D. L., Ingram, T., Revell, L. J., and Losos, J. B. (2013). Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–295.
Exceptional convergence on the macroevolutionary landscape in island lizard radiations.Crossref | GoogleScholarGoogle Scholar |

Mayer, G., and Tait, N. N. (2009). Position and development of oocytes in velvet worms shed light on the evolution of the ovary in Onychophora and Arthropoda. Zoological Journal of the Linnean Society 157, 17–33.
Position and development of oocytes in velvet worms shed light on the evolution of the ovary in Onychophora and Arthropoda.Crossref | GoogleScholarGoogle Scholar |

Mayer, G., Franke, F. A., Treffkorn, S., Gross, V., and Oliveira, I. S. (2015). Onychophora. In ‘Evolutionary Developmental Biology of Invertebrates 3: Ecdysozoa I: Non-Tetraconata’. (Ed. A. Wanninger.) pp. 53–98. (Springer: Vienna.)

Metcalfe, I. (2009). Late Palaeozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia. In ‘Late Palaeozoic and Mesozoic Ecosystems in SE Asia’. (Ed. E. Buffetaut, G. Cuny, J. Le Loeuff, V. Suteethorn.) pp. 7–23. (Geological Society: London).

Metcalfe, I. (2013a). Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences 66, 1–33.
Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys.Crossref | GoogleScholarGoogle Scholar |

Metcalfe, I. (2013b). Tectonic evolution of the Malay Peninsula. Journal of Asian Earth Sciences 76, 195–213.
Tectonic evolution of the Malay Peninsula.Crossref | GoogleScholarGoogle Scholar |

Metcalfe, I. (2017). Tectonic evolution of Sundaland. Bulletin of the Geological Society of Malaysia 63, 27–60.

Minh, B. Q., Nguyen, M. A. T., and von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188–1195.
Ultrafast approximation for phylogenetic bootstrap.Crossref | GoogleScholarGoogle Scholar |

Monge-Nájera, J. (1995). Phylogeny, biogeography and reproductive trends in the Onychophora. Zoological Journal of the Linnean Society 114, 21–60.
Phylogeny, biogeography and reproductive trends in the Onychophora.Crossref | GoogleScholarGoogle Scholar |

Monge-Nájera, J. (1996). Jurassic–Pliocene biogeography: testing a model with velvet worm (Onychophora) vicariance. Revista de Biología Tropical 44, 147–152.

Mora, M., Herrera, A., and León, P. (1995). The genome of Epiperipatus biolleyi (Peripatidae), a Costa Rican onychophoran. Revista de Biología Tropical 44, 153–157.

Murienne, J., Daniels, S. R., Buckley, T. R., Mayer, G., and Giribet, G. (2014). A living fossil tale of Pangaean biogeography. Proceedings. Biological Sciences 281, 20132648.
A living fossil tale of Pangaean biogeography.Crossref | GoogleScholarGoogle Scholar |

Nguyen, L. T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.Crossref | GoogleScholarGoogle Scholar |

Oberski, J. T., Sharma, P. P., Jay, K. R., Coblens, M. J., Lemon, K. A., Johnson, J. E., and Boyer, S. L. (2018). A dated molecular phylogeny of mite harvestmen (Arachnida: Opiliones: Cyphophthalmi) elucidates ancient diversification dynamics in the Australian Wet Tropics. Molecular Phylogenetics and Evolution. , .
A dated molecular phylogeny of mite harvestmen (Arachnida: Opiliones: Cyphophthalmi) elucidates ancient diversification dynamics in the Australian Wet Tropics.Crossref | GoogleScholarGoogle Scholar |

Oliveira, I. S., and Mayer, G. (2017). A new giant egg-laying onychophoran (Peripatopsidae) reveals evolutionary and biogeographical aspects of Australian velvet worms. Organisms, Diversity & Evolution 17, 375–391.
A new giant egg-laying onychophoran (Peripatopsidae) reveals evolutionary and biogeographical aspects of Australian velvet worms.Crossref | GoogleScholarGoogle Scholar |

Oliveira, I. S., and Wieloch, A. H. (2005). Macroperipatus machadoi sp. n. (Onychophora: Peripatidae) da Floresta Atlântica de Minas Gerais. Lundiana: International Journal of Biodiversity 6, 61–65.

Oliveira, I. S., Wieloch, A. H., and Mayer, G. (2010). Revised taxonomy and redescription of two species of the Peripatidae (Onychophora) from Brazil: a step towards consistent terminology of morphological characters. Zootaxa 2493, 16–34.

Oliveira, I. S., Lacorte, G. A., Fonseca, C. G., Wieloch, A. H., and Mayer, G. (2011). Cryptic speciation in Brazilian Epiperipatus (Onychophora: Peripatidae) reveals an underestimated diversity among the peripatid velvet worms. PLoS One 6, e19973.
Cryptic speciation in Brazilian Epiperipatus (Onychophora: Peripatidae) reveals an underestimated diversity among the peripatid velvet worms.Crossref | GoogleScholarGoogle Scholar |

Oliveira, I. S., Franke, F. A., Hering, L., Schaffer, S., Rowell, D. M., Weck-Haimann, A., Monge-Nájera, J., Morera-Brenes, B., and Mayer, G. (2012a). Unexplored character diversity in Onychophora (velvet worms): a comparative study of three peripatid species. PLoS One 7, e51220.
Unexplored character diversity in Onychophora (velvet worms): a comparative study of three peripatid species.Crossref | GoogleScholarGoogle Scholar |

Oliveira, I. S., Read, V. M. S. J., and Mayer, G. (2012b). A world checklist of Onychophora (velvet worms), with notes on nomenclature and status of names. ZooKeys 211, 1–70.
A world checklist of Onychophora (velvet worms), with notes on nomenclature and status of names.Crossref | GoogleScholarGoogle Scholar |

Oliveira, I. S., Schaffer, S., Kvartalnov, P. V., Galoyan, E. A., Plako, I. V., Weck-Heimann, A., Geissler, P., Ruhberg, H., and Mayer, G. (2013). A new species of Eoperipatus (Onychophora) from Vietnam reveals novel morphological characters for the South-East Asian Peripatidae. Zoologischer Anzeiger 252, 495–510.
A new species of Eoperipatus (Onychophora) from Vietnam reveals novel morphological characters for the South-East Asian Peripatidae.Crossref | GoogleScholarGoogle Scholar |

Oliveira, I. S., Lacorte, G. A., Weck-Heimann, A., Cordeiro, L. M., Wieloch, A. H., and Mayer, G. (2015). A new and critically endangered species and genus of Onychophora (Peripatidae) from the Brazilian savannah – a vulnerable biodiversity hotspot. Systematics and Biodiversity 13, 211–233.
A new and critically endangered species and genus of Onychophora (Peripatidae) from the Brazilian savannah – a vulnerable biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Oliveira, I. S., Bai, M., Jahn, H., Gross, V., Martin, C., Hammel, J. U., Zhang, W., and Mayer, G. (2016). Earliest onychophoran in amber reveals Gondwanan migration patterns. Current Biology 26, 2594–2601.
Earliest onychophoran in amber reveals Gondwanan migration patterns.Crossref | GoogleScholarGoogle Scholar |

Pacaud, G., Rolfe, W., Schram, F. R., Secretan, S., and Sotty, D. (1981). Quelques invertébrés noveaux du Stéphanien de Montceau-les-Mines. Les Onychophores. Bull. S.H.N. Autun 97, 37–43.

Peck, S. B. (1975). A review of the New World Onychophora with the description of a new cavernicolous genus and species from Jamaica. Psyche 82, 341–358.
A review of the New World Onychophora with the description of a new cavernicolous genus and species from Jamaica.Crossref | GoogleScholarGoogle Scholar |

Perrier, V., and Charbonnier, S. (2014). The Montceau-les-Mines Lagerstätte (Late Carboniferous, France). Comptes Rendus. Palévol 13, 353–367.
The Montceau-les-Mines Lagerstätte (Late Carboniferous, France).Crossref | GoogleScholarGoogle Scholar |

Poinar, G. (1996). Fossil velvet worms in Baltic and Dominican amber: onychophoran evolution and biogeography. Science 273, 1370–1371.
Fossil velvet worms in Baltic and Dominican amber: onychophoran evolution and biogeography.Crossref | GoogleScholarGoogle Scholar |

Poinar, G. (2000). Fossil onychophorans from Dominican and Baltic amber: Tertiapatus dominicanus n.g., n.sp. (Tertiapatidae n.fam.) and Succinipatopsis balticus n.g., n.sp. (Succinipatopsidae n.fam.) with a proposed classification of the subphylum Onychophora. Invertebrate Biology 119, 104–109.
Fossil onychophorans from Dominican and Baltic amber: Tertiapatus dominicanus n.g., n.sp. (Tertiapatidae n.fam.) and Succinipatopsis balticus n.g., n.sp. (Succinipatopsidae n.fam.) with a proposed classification of the subphylum Onychophora.Crossref | GoogleScholarGoogle Scholar |

Poinar, G. (2008). Palaeosiro burmanicum n. gen., n. sp., a fossil Cyphophthalmi (Arachnida: Opiliones: Sironidae) in Early Cretaceous Burmese amber. In ‘Advances in Arachnology and Developmental Biology. Papers dedicated to Prof. Dr. Božidar Ćurčić’. (Eds S. E. Makarov and R. N. Dimitrijević.) pp. 267–274. (Faculty of Life Sciences, University of Vienna & Serbian Academy of Sciences and Arts: Vienna, Belgrade, Sofia.)

Prendini, L., Weygoldt, P., and Wheeler, W. C. (2005). Systematics of the Damon variegatus group of African whip spiders (Chelicerata: Amblypygi): evidence from behaviour, morphology and DNA. Organisms, Diversity & Evolution 5, 203–236.
Systematics of the Damon variegatus group of African whip spiders (Chelicerata: Amblypygi): evidence from behaviour, morphology and DNA.Crossref | GoogleScholarGoogle Scholar |

Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J. (2003–2014). Tracer: MCMC Trace Analysis Tool Version 1.6.1pre. Available at: http://beast.bio.ed.ac.uk/Tracer

Read, V. M. S. J. (1988). The Onychophora of Trinidad, Tobago and the Lesser Antilles. Zoological Journal of the Linnean Society 93, 225–257.
The Onychophora of Trinidad, Tobago and the Lesser Antilles.Crossref | GoogleScholarGoogle Scholar |

Reid, A. L. (1996). A review of the Peripatopsidae (Onychophora) in Australia, with descriptions of new genera and species, and comments on peripatopsid relationships. Invertebrate Taxonomy 10, 663–936.
A review of the Peripatopsidae (Onychophora) in Australia, with descriptions of new genera and species, and comments on peripatopsid relationships.Crossref | GoogleScholarGoogle Scholar |

Riesgo, A., Andrade, S. C. S., Sharma, P. P., Novo, M., Pérez-Porro, A. R., Vahtera, V., González, V. L., Kawauchi, G. Y., and Giribet, G. (2012). Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa. Frontiers in Zoology 9, 33.
Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa.Crossref | GoogleScholarGoogle Scholar |

Rolfe, W. D. I., Schram, F. R., Pacaud, G., Sotty, D., and Secretan, S. (1982). A remarkable Stephanian biota from Montceau-les-Mines, France. Journal of Paleontology 56, 426–428.

Ross, A., Mellish, C., York, P., and Crighton, B. (2010). Burmese amber. In ‘Biodiversity of Fossils in Amber from the Major World Deposits’. (Ed. D. Penney.) pp. 208–235. (Siri Scientific Press.)

Sampaio Costa, C. (2016). Sistemática e análise filogenética de Epiperipatus Clark, 1913 baseada em dados moleculares e morfológicos (Onychophora: Peripatidae). Ph.D. Thesis, Universidade de São Paulo.

Sampaio-Costa, C., Chagas-Junior, A., and Baptista, R. L. C. (2009). Brazilian species of Onychophora with notes on their taxonomy and distribution. Zoologia 26, 553–561.
Brazilian species of Onychophora with notes on their taxonomy and distribution.Crossref | GoogleScholarGoogle Scholar |

Schulmeister, S., Wheeler, W. C., and Carpenter, J. M. (2002). Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics 18, 455–484.
Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis.Crossref | GoogleScholarGoogle Scholar |

Segovia, R., Pett, W., Trewick, S., and Lavrov, D. V. (2011). Extensive and evolutionarily persistent mitochondrial tRNA editing in velvet worms (Phylum Onychophora). Molecular Biology and Evolution 28, 2873–2881.
Extensive and evolutionarily persistent mitochondrial tRNA editing in velvet worms (Phylum Onychophora).Crossref | GoogleScholarGoogle Scholar |

Selden, P. A., Dunlop, J. A., Giribet, G., Zhang, W., and Ren, D. (2016). The oldest armoured harvestman (Arachnida: Opiliones: Laniatores), from Upper Cretaceous Myanmar amber. Cretaceous Research 65, 206–212.
The oldest armoured harvestman (Arachnida: Opiliones: Laniatores), from Upper Cretaceous Myanmar amber.Crossref | GoogleScholarGoogle Scholar |

Sharma, P. P., and Giribet, G. (2014). A revised dated phylogeny of the arachnid order Opiliones. Frontiers in Genetics 5, 255.
A revised dated phylogeny of the arachnid order Opiliones.Crossref | GoogleScholarGoogle Scholar |

Shi, G., Grimaldi, D. A., Harlow, G. E., Wang, J., Wang, J., Yang, M., Lei, W., Li, Q., and Li, X. (2012). Age constraint on Burmese amber based on U–Pb dating of zircons. Cretaceous Research 37, 155–163.
Age constraint on Burmese amber based on U–Pb dating of zircons.Crossref | GoogleScholarGoogle Scholar |

Song, L., and Florea, L. (2015). Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4, 48.
Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads.Crossref | GoogleScholarGoogle Scholar |

Stelbrink, B., Albrecht, C., Hall, R., and von Rintelen, T. (2012). The biogeography of Sulawesi revisited: is there evidence for a vicariant origin of taxa on Wallace’s “anomalous island”? Evolution 66, 2252–2271.

Svensen, H. H., Torsvik, T. H., Callegaro, S., Augland, L., Heimdal, T. H., Jerram, D. A., Planke, S., and Pereira, E. (2017). Gondwana Large Igneous Provinces: plate reconstructions, volcanic basins and sill volumes. pp. SP463.7. (The Geological Society of London: London.)

Torsvik, T. H., and Cocks, L. R. M. (2013). Gondwana from top to base in space and time. Gondwana Research 24, 999–1030.
Gondwana from top to base in space and time.Crossref | GoogleScholarGoogle Scholar |

Torsvik, T. H., van der Voo, R., Doubrovine, P. V., Burke, K., Steinberger, B., Ashwal, L. D., Tronnes, R. G., Webb, S. J., and Bull, A. L. (2014). Deep mantle structure as a reference frame for movements in and on the Earth. Proceedings of the National Academy of Sciences of the United States of America 111, 8735–8740.
Deep mantle structure as a reference frame for movements in and on the Earth.Crossref | GoogleScholarGoogle Scholar |

Treffkorn, S., and Mayer, G. (2017). Conserved versus derived patterns of controlled cell death during the embryonic development of two species of Onychophora (velvet worms). Developmental Dynamics 246, 403–416.
Conserved versus derived patterns of controlled cell death during the embryonic development of two species of Onychophora (velvet worms).Crossref | GoogleScholarGoogle Scholar |

Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A., and Minh, B. Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44, W232–W235.
W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis.Crossref | GoogleScholarGoogle Scholar |

Vachon, M. (1953). Quelques réflexions sur la répartition actuelle et passée des Onychophores ou Péripates. Comptes Rendus et Sommaires de Séances, Societé de Biogéographie de Paris 262, 139–142.

Vachon, M. (1954). Répartition actuelle et ancienne des Onychophores ou Peripates. Revue Générale des Sciences, Pures et Appliquées 61, 300–308.

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |

Veevers, J. J. (2012). Reconstructions before rifting and drifting reveal the geological connections between Antarctica and its conjugates in Gondwanaland. Earth-Science Reviews 111, 249–318.
Reconstructions before rifting and drifting reveal the geological connections between Antarctica and its conjugates in Gondwanaland.Crossref | GoogleScholarGoogle Scholar |

von Kennel, J. (1883). Entwicklungsgeschichte von Peripatus. Zoologischer Anzeiger 6, 531–537.

von Kennel, J. (1884). Entwicklungssgeschichte von Peripatus Edwardsii, Blanch., und Peripatus torquatus n. sp. Arbeiten aus dem Zoologisch-Zootomischen Institut in Würzburg 7, 95–229.

Wheeler, W. M. (1898). A new Peripatus from Mexico. Journal of Morphology 15, 1–8.
A new Peripatus from Mexico.Crossref | GoogleScholarGoogle Scholar |

Whiting, M. F., Carpenter, J. M., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.

Wolfe, J. M., Daley, A. C., Legg, D. A., and Edgecombe, G. D. (2016). Fossil calibrations for the arthropod Tree of Life. Earth–Science Reviews 160, 43–110.
Fossil calibrations for the arthropod Tree of Life.Crossref | GoogleScholarGoogle Scholar |

Yilmaz, P., Parfrey, L. W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W., and Glöckner, F. O. (2014). The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research 42, D643–D648.
The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks.Crossref | GoogleScholarGoogle Scholar |

Zilch, A. (1954a). Ein neuer Oroperipatus aus Peru (Onychophora). Senckenbergiana Biologica 35, 151–154.

Zilch, A. (1954b). Onychophoren aus El Salvador. Senckenbergiana Biologica 35, 147–150.