Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Species richness of jellyfishes (Scyphozoa : Discomedusae) in the Tropical Eastern Pacific: missed taxa, molecules, and morphology match in a biodiversity hotspot

Liza Gómez Daglio A B and Michael N Dawson A
+ Author Affiliations
- Author Affiliations

A School of Natural Sciences, University of California, Merced, 5200 N. Lake Road, Merced, CA 95343, USA.

B Corresponding author. Email: lgomezdaglio@ucmerced.edu

Invertebrate Systematics 31(5) 635-663 https://doi.org/10.1071/IS16055
Submitted: 5 August 2016  Accepted: 18 March 2017   Published: 20 September 2017

Abstract

Species richness in the seas has been underestimated due to the combined challenges presented by the taxonomic impediment, delimitation of species, preponderance of cryptic species, and uneven sampling effort. The mismatch between actual and estimated diversity varies by region and by taxon, leaving open questions such as: are hotspots for well-known taxa also hotspots for poorly known taxa? We address these challenges and this question for shallow-water scyphozoan jellyfishes in the Tropical Eastern Pacific (TEP). We increased sampling effort at 34 coastal locations along the TEP, and combined analyses of four molecular markers and up to 53 morphological characters. We applied phylogenetic analyses under Bayesian and maximum likelihood frameworks, barcoding, and statistical multivariate analyses of morphological data to estimate species richness. Where only five Discomedusae were reported previously, we found a total of 25 species. Of these, 22 species are new to science, two are non-indigenous, and one is a previous record; the other four prior records had been misidentified. The new discoveries evince the need to evaluate the evolutionary relationships with neighbouring regions to understand fully the origins of jellyfish diversity in the TEP and will lead to revision of the systematics and taxonomy of Scyphozoa.

Additional keywords: biodiversity, Cnidaria, DNA barcoding, molecular phylogenetics, morphometrics, species delineation, taxonomy.


References

Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., Bamber, R., Barber, A., Bartsch, I., Berta, A., Błażewicz-Paszkowycz, M., Bock, P., Boxshall, G., Boyko, C. B., Brandão, S. N., Bray, R. A., Bruce, N. L., Cairns, S. D., Chan, T.-Y., Cheng, L., Collins, A. G., Cribb, T., Curini-Galletti, M., Dahdouh-Guebas, F., Davie, P. J. F., Dawson, M. N., De Clerck, O., Decock, W., De Grave, S., de Voogd, N. J., Domning, D. P., Emig, C. C., Erséus, C., Eschmeyer, W., Fauchald, K., Fautin, D. G., Feist, S. W., Fransen, C. H. J. M., Furuya, H., Garcia-Alvarez, O., Gerken, S., Gibson, D., Gittenberger, A., Gofas, S., Gomez Daglio, L., Gordon, D. P., Guiry, M. D., Hernandez, F., Hoeksema, B. W., Hopcroft, R. R., Jaume, D., Kirk, P., Koedam, N., Koenemann, S., Kolb, J. B., Kristensen, R. M., Kroh, A., Lambert, G., Lazarus, D. B., Lemaitre, R., Longshaw, M., Lowry, J., Macpherson, E., Madin, L. P., Mah, C., Mapstone, G., McLaughlin, P. A., Mees, J., Meland, K., Messing, C. G., Mills, C. E., Molodtsova, T. N., Mooi, R., Neuhaus, B., Ng, P. K. L., Nielsen, C., Norenburg, J., Opresko, D. M., Osawa, M., Paulay, G., Perrin, W., Pilger, J. F., Poore, G. C. B., Pugh, P., Read, G. B., Reimer, J. D., Rius, M., Rocha, R. M., Saiz-Salinas, J. I., Scarabino, V., Schierwater, B., Schmidt-Rhaesa, A., Schnabel, K. E., Schotte, M., Schuchert, P., Schwabe, E., Segers, H., Self-Sullivan, C., Shenkar, N., Siegel, V., Sterrer, W., Stöhr, S., Swalla, B., Tasker, M. L., Thuesen, E. V., Timm, T., Todaro, M. A., Turon, X., Tyler, S., Uetz, P., van der Land, J., Vanhoorne, B., van Ofwegen, L. P., van Soest, R. W. M., Vanaverbeke, J., Walker-Smith, G., Walter, T. C., Warren, A., Williams, G. C., Wilson, S. P., and Costello, M. J. (2012). The magnitude of global marine species diversity. Current Biology 22, 2189–2202.
The magnitude of global marine species diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12gtb7K&md5=e5bf105fecd1d5ae542ef0d999371d46CAS |

Arai, M. N. (1997). ‘A Functional Biology of Scyphozoa.’ (Chapman & Hall: UK.)

Avian, M., Ramšak, A., Tirelli, V., D’Ambra, I., and Malej, A. (2016). Redescription of Pelagia benovici into a new genus, Mawia, gen. nov. and its phylogenetic position within Pelagiidae (Cnidaria, Scyphozoa, Semaeostomeae). Invertebrate Systematics 30, 523–546.

Bayha, K. M., and Dawson, M. N (2010). New family of allomorphic jellyfishes, Drymonematidae (Scyphozoa, Discomedusae), emphasizes evolution in the functional morphology and trophic ecology of gelatinous zooplankton. The Biological Bulletin 219, 249–267.
New family of allomorphic jellyfishes, Drymonematidae (Scyphozoa, Discomedusae), emphasizes evolution in the functional morphology and trophic ecology of gelatinous zooplankton.Crossref | GoogleScholarGoogle Scholar |

Bayha, K. M., Dawson, M. N., Collins, A. G., Barbeitos, M. S., and Haddock, S. H. D. (2010). Evolutionary relationships among scyphozoan jellyfish families based on complete taxon sampling and phylogenetic analyses of 18S and 28S ribosomal DNA. Integrative and Comparative Biology 50, 436–455.
Evolutionary relationships among scyphozoan jellyfish families based on complete taxon sampling and phylogenetic analyses of 18S and 28S ribosomal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2hs7jN&md5=a625c37483bee86e5c3e1e7b2d4f67aeCAS |

Bellwood, D. R., and Meyer, C. P. (2009). Searching for heat in a marine biodiversity hotspot. Journal of Biogeography 36, 569–576.
Searching for heat in a marine biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Sayers, E. W. (2013). GenBank. Nucleic Acids Research 41, D36–D42.
GenBank.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2ksbjJ&md5=c86ce6af2bf3ec9195b69e2e9e28c84eCAS |

Bergsten, J., Bilton, D. T., Fujisawa, T., Elliott, M., Monaghan, M. T., Balke, M., Hendrich, L., Geijer, J., Herrmann, J., Foster, G. N., Ribera, I., Nilsson, A. N., Barraclough, T. G., and Vogler, A. P. (2012). The effect of geographical scale of sampling on DNA barcoding. Systematic Biology 61, 851–869.
The effect of geographical scale of sampling on DNA barcoding.Crossref | GoogleScholarGoogle Scholar |

Bigelow, H. B. (1914). Note on the medusan genus Stomolophus, from San Diego. University of California Publications in Zoology 13, 239–241.

Bigelow, H. B. (1940). Medusae of the Templeton Croker and Eastern Pacific Zaca expeditions, 1936–1938. Zoologica XXV, 281–321.

Boschi, E. E. (2002). Distribution of continental shelf decapod crustaceans along the American Pacific coast. In ‘Modern Approaches to the Study of Crustacea’. (Eds E. Escobar-Briones and F. Álvarez.) pp. 235–239. (Springer: Boston, MA.)

Bouchet, P. (2006). The magnitude of marine biodiversity. In ‘The Exploration of Marine Biodiversity.’ (Ed. C. M. Duarte.) pp. 2–64. (Fundación BBVA: Spain.)

Bowen, B. W., Rocha, L. A., Toonen, R. J., Karl, S. A., and Laboratory, T. T. (2013). The origins of tropical marine biodiversity. Trends in Ecology & Evolution 28, 359–366.
The origins of tropical marine biodiversity.Crossref | GoogleScholarGoogle Scholar |

Briggs, J. C. (1961). East Pacific barrier and distribution of marine shore fishes. Evolution 15, 545–554.
East Pacific barrier and distribution of marine shore fishes.Crossref | GoogleScholarGoogle Scholar |

Briggs, J. C. (2005a). Coral reefs: conserving the evolutionary sources. Biological Conservation 126, 297–305.
Coral reefs: conserving the evolutionary sources.Crossref | GoogleScholarGoogle Scholar |

Briggs, J. C. (2005b). The marine East Indies: diversity and speciation. Journal of Biogeography 32, 1517–1522.
The marine East Indies: diversity and speciation.Crossref | GoogleScholarGoogle Scholar |

Briggs, J. C., and Bowen, B. W. (2012). A realignment of marine biogeographic provinces with particular reference to fish distributions. Journal of Biogeography 39, 12–30.
A realignment of marine biogeographic provinces with particular reference to fish distributions.Crossref | GoogleScholarGoogle Scholar |

Brotz, L., Cheung, W. W. L., Kleisner, K., Pakhomov, E., and Pauly, D. (2012). Increasing jellyfish populations: trends in large marine ecosystems. Hydrobiologia 690, 3–20.
Increasing jellyfish populations: trends in large marine ecosystems.Crossref | GoogleScholarGoogle Scholar |

Bucklin, A., Ortman, B. D., Jennings, R. M., Nigro, L. M., Sweetman, C. J., Copley, N. J., Sutton, T., and Wiebe, P. H. (2010). A ‘Rosetta Stone’ for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (northwest Atlantic Ocean). Deep-sea Research. Part II, Topical Studies in Oceanography 57, 2234–2247.
A ‘Rosetta Stone’ for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (northwest Atlantic Ocean).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKjt7%2FJ&md5=47ee7377cf617151a5b810979827c07dCAS |

Capella-Gutiérrez, S., Silla-Martínez, J. M., and Gabaldón, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.
trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Caputi, L., Andreakis, N., Mastrototaro, F., Cirino, P., Vassillo, M., and Sordino, P. (2007). Cryptic speciation in a model invertebrate chordate. Proceedings of the National Academy of Sciences of the United States of America 104, 9364–9369.
Cryptic speciation in a model invertebrate chordate.Crossref | GoogleScholarGoogle Scholar |

Carstens, B. C., Pelletier, T. A., Reid, N. M., and Satler, J. D. (2013). How to fail at species delimitation. Molecular Ecology 22, 4369–4383.
How to fail at species delimitation.Crossref | GoogleScholarGoogle Scholar |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=12c15c65b143ca193ea00e1aa007f6b7CAS |

Ceh, J., Gonzalez, J., Pacheco, A. S., and Riascos, J. M. (2015). The elusive life cycle of scyphozoan jellyfish – metagenesis revisited. Scientific Reports 5, 12037.
The elusive life cycle of scyphozoan jellyfish – metagenesis revisited.Crossref | GoogleScholarGoogle Scholar |

Collins, R. A., and Cruickshank, R. H. (2013). The seven deadly sins of DNA barcoding. Molecular Ecology Resources 13, 969–975.
The seven deadly sins of DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s3lvVOqug%3D%3D&md5=fd033133f64d567ca7087f38d63cf7b5CAS |

Collins, A., Schuchert, P., Marques, A., Jankowski, T., Medina, M., and Schierwater, B. (2006). Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Systematic Biology 55, 97–115.
Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models.Crossref | GoogleScholarGoogle Scholar |

Condon, R. H., Graham, W. M., Duarte, C. M., Pitt, K. A., Lucas, C. H., Haddock, S., Sutherland, K. R., Robinson, K., Dawson, M. N, Decker, M. B., Mills, C. E., Purcell, J. E., Malej, A., Mianzan, H., Uye, S.-I., Gelcich, S., and Madin, L. (2012). Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62, 160–169.
Questioning the rise of gelatinous zooplankton in the world’s oceans.Crossref | GoogleScholarGoogle Scholar |

Condon, R. H., Duarte, C. M., Pitt, K. A., Robinson, K. L., Lucas, C. H., Sutherland, K. R., Mianzan, H. W., Bogeberg, M., Purcell, J. E., Decker, M. B., Uye, S.-I., Madin, L. P., Brodeur, R. D., Haddock, S. H. D., Malej, A., Parry, G. D., Eriksen, E., Quiñones, J., Acha, M., Harvey, M., Arthur, J. M., and Graham, W. M. (2013). Recurrent jellyfish blooms are a consequence of global oscillations. Proceedings of the National Academy of Sciences of the United States of America 110, 1000–1005.
Recurrent jellyfish blooms are a consequence of global oscillations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1yhtrg%3D&md5=23c861fac490849ae5dc070fb35e14deCAS |

Cortés-Núñez, J. (1997). Biodiversidad marina de Costa Rica: Filo Cnidaria. Costa Rican marine biodiversity: Phylum Cnidaria. Revista de Biología Tropical 44, 323–334.

Costa, F. O., Henzler, C. M., Lunt, D. H., Whiteley, N. M., and Rock, J. (2009). Probing marine Gammarus (Amphipoda) taxonomy with DNA barcodes. Systematics and Biodiversity 7, 365–379.
Probing marine Gammarus (Amphipoda) taxonomy with DNA barcodes.Crossref | GoogleScholarGoogle Scholar |

Costello, M. J., Coll, M., Danovaro, R., Halpin, P., Ojaveer, H., and Miloslavich, P. (2010). A census of marine biodiversity knowledge, resources, and future challenges. PLoS One 5, e12110.
A census of marine biodiversity knowledge, resources, and future challenges.Crossref | GoogleScholarGoogle Scholar |

Cracraft, J. (1983). Species concepts and speciation analysis. Current Ornithology 1, 159–187.
Species concepts and speciation analysis.Crossref | GoogleScholarGoogle Scholar |

Cracraft, J. (1992). The species of the birds‐of‐paradise (Paradisaeidae): applying the phylogenetic species concept to a complex pattern of diversification. Cladistics 8, 1–43.
The species of the birds‐of‐paradise (Paradisaeidae): applying the phylogenetic species concept to a complex pattern of diversification.Crossref | GoogleScholarGoogle Scholar |

Darriba, D. D., Taboada, G. L. G., Doallo, R. R., and Posada, D. D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=1e151a811e335310e17f8244e6b6ccbaCAS |

Darwin, C. (1859). ‘On the Origin of Species by Means of Natural Selection.’ (Murray: London.)

Dawson, M. N (2003). Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa). Marine Biology 143, 369–379.
Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa).Crossref | GoogleScholarGoogle Scholar |

Dawson, M. N (2004). Some implications of molecular phylogenetics for understanding biodiversity in jellyfishes, with emphasis on Scyphozoa. Hydrobiologia 530, 249–260.
Some implications of molecular phylogenetics for understanding biodiversity in jellyfishes, with emphasis on Scyphozoa.Crossref | GoogleScholarGoogle Scholar |

Dawson, M. N (2005a). Renaissance taxonomy: integrative evolutionary analyses in the classification of Scyphozoa. Journal of the Marine Biological Association of the United Kingdom 85, 733–739.
Renaissance taxonomy: integrative evolutionary analyses in the classification of Scyphozoa.Crossref | GoogleScholarGoogle Scholar |

Dawson, M. N. (2005b). Cyanea capillata is not a cosmopolitan jellyfish: morphological and molecular evidence for C. annaskala and C. rosea (Scyphozoa: Semaeostomeae: Cyaneidae) in south-eastern Australia. Invertebrate Systematics 19, 361–370.
Cyanea capillata is not a cosmopolitan jellyfish: morphological and molecular evidence for C. annaskala and C. rosea (Scyphozoa: Semaeostomeae: Cyaneidae) in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Dawson, M. N (2005c). Morphological variation and systematics in the Scyphozoa: Mastigias (Rhizostomeae, Mastigiidae) – a golden unstandard? Hydrobiologia 537, 185–206.
Morphological variation and systematics in the Scyphozoa: Mastigias (Rhizostomeae, Mastigiidae) – a golden unstandard?Crossref | GoogleScholarGoogle Scholar |

Dawson, M. N (2005d). Morphologic and molecular redescription of Catostylus mosaicus conservativus (Scyphozoa: Rhizostomeae: Catostylidae) from south-east Australia. Journal of the Marine Biological Association of the United Kingdom 85, 723–731.
Morphologic and molecular redescription of Catostylus mosaicus conservativus (Scyphozoa: Rhizostomeae: Catostylidae) from south-east Australia.Crossref | GoogleScholarGoogle Scholar |

Dawson, M. N., and Jacobs, D. K. (2001). Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). The Biological Bulletin 200, 92–96.
Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mzgt1Snsg%3D%3D&md5=843125da7feaf71626c46d6423a07a03CAS |

Dawson, M. N, Sen Gupta, A., and England, M. H. (2005). Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proceedings of the National Academy of Sciences of the United States of America 102, 11968–11973.
Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1yrtbY%3D&md5=d01f2cddf2bf1b9aae5e8e7b8910ec31CAS |

Dawson, M. N, Cieciel, K., Decker, M. B., Hays, G. C., Lucas, C. H., and Pitt, K. A. (2015). Population-level perspectives on global change: genetic and demographic analyses indicate various scales, timing, and causes of scyphozoan jellyfish blooms. Biological Invasions 17, 851–867.
Population-level perspectives on global change: genetic and demographic analyses indicate various scales, timing, and causes of scyphozoan jellyfish blooms.Crossref | GoogleScholarGoogle Scholar |

Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society 85, 407–415.
Towards integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Dayrat, B., Cantino, P., Clarke, J., and De Queiroz, K. (2008). Species names in the PhyloCode: the approach adopted by the International Society for Phylogenetic Nomenclature. Systematic Biology 57, 507–514.
Species names in the PhyloCode: the approach adopted by the International Society for Phylogenetic Nomenclature.Crossref | GoogleScholarGoogle Scholar |

de Carvalho, M. R., Bockmann, F. A., Amorim, D. S., de Vivo, M., de Toledo-Piza, M., Menezes, N. A., de Figueiredo, J. L., Castro, R. M. C., Gill, A. C., McEachran, J. D., Compagno, L. J. V., Schelly, R. C., Britz, R., Lundberg, J. G., Vari, R. P., and Nelson, G. (2005). Revisiting the taxonomic impediment. Science 307, 353b.
Revisiting the taxonomic impediment.Crossref | GoogleScholarGoogle Scholar |

de Carvalho, M. R., Bockmann, F. A., Amorim, D. S., Brandão, C. R. F., de Vivo, M., de Figueiredo, J. L., Britski, H. A., de Pinna, M. C. C., Menezes, N. A., Marques, F. P. L., and Papavero, de Carvalho, M. R., Bockmann, F. A., Amorim, D. S., Brandão, C. R. F., de Vivo, M., de Figueiredo, J. L., Britski, H. A., de Pinna, M. C. C., Menezes, N. A., Marques, F. P. L., and Papavero, de Carvalho, M. R., Bockmann, F. A., Amorim, D. S., Brandão, C. R. F., de Vivo, M., de Figueiredo, J. L., Britski, H. A., de Pinna, M. C. C., Menezes, N. A., Marques, F. P. L., and Papavero, (2007). Taxonomic Impediment or impediment to taxonomy? A commentary on systematics and the cybertaxonomic-automation paradigm. Journal of Evolutionary Biology 34, 140–143.

De Queiroz, K. (2005a). A unified concept of species and its consequences for the future of taxonomy. Proceedings of the California Academy of Sciences 56, 196–215.

de Queiroz, K. (2005b). Ernst Mayr and the modern concept of species. Proceedings of the National Academy of Sciences of the United States of America 102, 6600–6607.
Ernst Mayr and the modern concept of species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlaisLo%3D&md5=5c55c5ade11240ecff6fe0e89febf338CAS |

De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56, 879–886.
Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar |

Dellicour, S., and Flot, J.-F. (2015). Delimiting species-poor data sets using single molecular markers: a study of Barcode gaps, Haplowebs and GMYC. Systematic Biology 64, 900–908.
Delimiting species-poor data sets using single molecular markers: a study of Barcode gaps, Haplowebs and GMYC.Crossref | GoogleScholarGoogle Scholar |

Dobzhansky, T., Ayala, F., Stebbins, G. L., and Valentine, J. (1977). ‘Evolution.’ (W.H. Freeman and Co.: San Francisco.)

Dong, J., Sun, M., Wang, B., and Liu, H. (2008). Comparison of life cycles and morphology of Cyanea nozakii and other scyphozoans. Plankton & Benthos Research 3, 118–124.
Comparison of life cycles and morphology of Cyanea nozakii and other scyphozoans.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=1128fe2c54a768f2b18bd3a1ecbe3c88CAS |

Ebach, M. C., and Holdrege, C. (2005). DNA barcoding is no substitute for taxonomy. Nature 434, 697.
DNA barcoding is no substitute for taxonomy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFCgt74%3D&md5=62c77c9302d504edb12d40faf6739042CAS |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
| 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=3779829e13a4c162ef008e41e63c789fCAS |

Edwards, D. L., and Knowles, L. L. (2014). Species detection and individual assignment in species delimitation: can integrative data increase efficacy? Proceedings. Biological Sciences 281, 20132765.
Species detection and individual assignment in species delimitation: can integrative data increase efficacy?Crossref | GoogleScholarGoogle Scholar |

Ellingson, R. A., and Krug, P. J. (2006). Evolution of poecilogony from planktotrophy: cryptic speciation, phylogeography, and larval development in the gastropod genus Alderia. Evolution 60, 2293–2310.
Evolution of poecilogony from planktotrophy: cryptic speciation, phylogeography, and larval development in the gastropod genus Alderia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFyhsg%3D%3D&md5=fdb97d40cda566a21a4f2a5197004fc8CAS |

Ellis, R., Waterton, C., and Wynne, B. (2010). Taxonomy, biodiversity and their publics in twenty-first-century DNA barcoding. Public Understanding of Science (Bristol, England) 19, 497–512.
Taxonomy, biodiversity and their publics in twenty-first-century DNA barcoding.Crossref | GoogleScholarGoogle Scholar |

Esselstyn, J. A., Maharadatunkamsi, , Achmadi, A. S., Siler, C. D., and Evans, B. J. (2013). Carving out turf in a biodiversity hotspot: multiple, previously unrecognized shrew species co-occur on Java Island, Indonesia. Molecular Ecology 22, 4972–4987.
Carving out turf in a biodiversity hotspot: multiple, previously unrecognized shrew species co-occur on Java Island, Indonesia.Crossref | GoogleScholarGoogle Scholar |

Felsenstein, J. (2005). Using the quantitative genetic threshold model for inferences between and within species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 1427–1434.
Using the quantitative genetic threshold model for inferences between and within species.Crossref | GoogleScholarGoogle Scholar |

Fitzpatrick, B. M., Fordyce, J. A., and Gavrilets, S. (2009). Pattern, process and geographic modes of speciation. Journal of Evolutionary Biology 22, 2342–2347.
Pattern, process and geographic modes of speciation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c%2FhtlyhtQ%3D%3D&md5=a8b9bda34c312c2ff35aac11e8139aafCAS |

Frankham, R., Ballou, J. D., Dudash, M. R., Eldridge, M. D. B., Fenster, C. B., Lacy, R. C., Mendelson, J. R., Porton, I. J., Ralls, K., and Ryder, O. A. (2012). Implications of different species concepts for conserving biodiversity. Biological Conservation 153, 25–31.
Implications of different species concepts for conserving biodiversity.Crossref | GoogleScholarGoogle Scholar |

Frey, M. A., and Vermeij, G. J. (2008). Molecular phylogenies and historical biogeography of a circumtropical group of gastropods (Genus: Nerita): implications for regional diversity patterns in the marine tropics. Molecular Phylogenetics and Evolution 48, 1067–1086.
Molecular phylogenies and historical biogeography of a circumtropical group of gastropods (Genus: Nerita): implications for regional diversity patterns in the marine tropics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVynt7bL&md5=81bbe74413cc47581de2b36f0477646fCAS |

Galil, B., Gershwin, L.-A., Douek, J., and Rinkevich, B. (2010). Marivagia stellata gen. et sp. nov. (Scyphozoa: Rhizostomeae: Cepheidae), another alien jellyfish from the Mediterranean coast of Israel. Aquatic Invasions 5, 331–340.
Marivagia stellata gen. et sp. nov. (Scyphozoa: Rhizostomeae: Cepheidae), another alien jellyfish from the Mediterranean coast of Israel.Crossref | GoogleScholarGoogle Scholar |

Gershwin, L.-A., and Collins, A. G. (2002). A preliminary phylogeny of Pelagiidae (Cnidaria, Scyphozoa), with new observations of Chrysaora colorata comb. nov. Journal of Natural History 36, 127–148.
A preliminary phylogeny of Pelagiidae (Cnidaria, Scyphozoa), with new observations of Chrysaora colorata comb. nov.Crossref | GoogleScholarGoogle Scholar |

Gershwin, L.-A., and Zeidler, W. (2008a). Some new and previously unrecorded Scyphomedusae (Cnidaria: Scyphozoa) from southern Australian coastal waters. Zootaxa 1744, 1–18.
Some new and previously unrecorded Scyphomedusae (Cnidaria: Scyphozoa) from southern Australian coastal waters.Crossref | GoogleScholarGoogle Scholar |

Gershwin, L.-A., and Zeidler, W. (2008b). Two new jellyfishes (Cnidaria: Scyphozoa) from tropical Australian waters. Zootaxa 1764, 41–52.
Two new jellyfishes (Cnidaria: Scyphozoa) from tropical Australian waters.Crossref | GoogleScholarGoogle Scholar |

Gibbons, M. J., and Richardson, A. J. (2013). Beyond the jellyfish joyride and global oscillations: advancing jellyfish research. Journal of Plankton Research 35, 929–938.
Beyond the jellyfish joyride and global oscillations: advancing jellyfish research.Crossref | GoogleScholarGoogle Scholar |

Gibbons, M. J., Abiahy, B. B., Angel, M., Assuncao, C. M. L., Bartsch, I., Best, P., Biseswar, R., Bouillon, J., Brandford-Grieve, J. M., Branch, W., Burreson, E. M., Cannon, L., Casanova, J. P., Channing, A., Child, C. A., Compagno, L., Cornelius, P., Dadon, J. R., David, J. H. M., Day, J., Della Croce, N., Emschermann, P., Erséus, C., Esnal, G., Gibson, R., Griffiths, C. L., Hayward, P. J., Heard, R., Heemstra, P. J., Herbert, D., Hessler, R., Higgins, R., Hiller, N., Hirano, Y. M., Kensley, B., Kilburn, R., Kornicker, L., Lambshead, J., Manning, R., Marshall, D., Mianzan, H. W., Monniot, C., Newman, W. A., Nielsen, C., Patterson, G., Pugh, P., Roeleveld, M., Ross, A., Ryan, P., Ryland, J. S., Swansea, S., Samaai, T., Schleyer, M., Schockaert, E., Seapy, R., Shiel, R., Sluy, R., Southward, E. C., Sulaiman, A., Thandar, A., van der Spoel, S., van Soest, R. W. M., van der Land, J., Vetter, E., Vinogradov, G. A., William, G., and Wooldridge, T. (1999). The taxonomic richness of South Africa’s marine fauna: a crisis at hand. South African Journal of Science 95, 8–12.

Girón-Nava, A., López-Sagástegui, C., and Aburto-Oropeza, O. (2015). On the conditions of the 2012 cannonball jellyfish (Stomolophus meleagris) bloom in Golfo de Santa Clara: a fishery opportunity? Fisheries Management and Ecology 22, 261–264.
On the conditions of the 2012 cannonball jellyfish (Stomolophus meleagris) bloom in Golfo de Santa Clara: a fishery opportunity?Crossref | GoogleScholarGoogle Scholar |

Goldstein, P. Z., and DeSalle, R. (2011). Integrating DNA barcode data and taxonomic practice: determination, discovery, and description. BioEssays 33, 135–147.
Integrating DNA barcode data and taxonomic practice: determination, discovery, and description.Crossref | GoogleScholarGoogle Scholar |

Gómez-Aguirre, S. (1991). Contribución al estudio faunístico de celenterados y ctenóforos del plancton estuarino del noroeste de México. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología 62, 1–10.

Gordon, D. P. (2001). ‘Marine Biodiversity.’ (Royal Society of New Zealand.)

Graham, W. M., and Bayha, K. M. (2007). Biological invasions by marine jellyfish. In ‘Biological Invasions’. (Ed. W. Nentwig.) Ecological Studies. pp. 239–255. (Springer: Berlin Heidelberg.)

Graham, W. M., Martin, D. L., Felder, D. L., Asper, V. L., and Perry, H. M. (2003). Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Biological Invasions 5, 53–69.
Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Greenberg, N., Garthwaite, R. L., and Potts, D. C. (1996). Allozyme and morphological evidence for a newly introduced species of Aurelia in San Francisco Bay, California. Marine Biology 125, 401–410.
Allozyme and morphological evidence for a newly introduced species of Aurelia in San Francisco Bay, California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFWqs78%3D&md5=062188ff5492e27d4236b812b2585124CAS |

Guzman, H. M., Benfield, S., Breedy, O., and Mair, J. M. (2008). Broadening reef protection across the Marine Conservation Corridor of the Eastern Tropical Pacific: distribution and diversity of reefs in Las Perlas Archipelago, Panama. Environmental Conservation 35, 46–54.
Broadening reef protection across the Marine Conservation Corridor of the Eastern Tropical Pacific: distribution and diversity of reefs in Las Perlas Archipelago, Panama.Crossref | GoogleScholarGoogle Scholar |

Haeckel, E. (1879). ‘Das System der Medusen. Atlas der Craspedoten.’ (Von Gustav Fischer, Jena Verlag.)

Hamner, W. M., and Dawson, M. N (2009). A review and synthesis on the systematics and evolution of jellyfish blooms: advantageous aggregations and adaptive assemblages. Hydrobiologia 616, 161–191.
A review and synthesis on the systematics and evolution of jellyfish blooms: advantageous aggregations and adaptive assemblages.Crossref | GoogleScholarGoogle Scholar |

Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003a). Biological identifications through DNA barcodes. Proceedings, Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=74c96653f346aee0276a4b4877be73e8CAS |

Hebert, P. D. N., Ratnasingham, S., and de Waard, J. R. (2003b). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings, Biological Sciences 270, S96–S99.
Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Smsbo%3D&md5=e2829a42659d698c6beae7f0ecac7f10CAS |

Hebert, P. D. N., deWaard, J. R., and Landry, J. F. (2010). DNA barcodes for 1/1000 of the animal kingdom. Biology Letters 6, 359–362.
DNA barcodes for 1/1000 of the animal kingdom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovFCqsrw%3D&md5=435e51483a0643afd56a0b414baea8a8CAS |

Hennig, W. (1950). ‘Phylogenetic Systematics.’ (University of Illinois Press: Champaign, IL.)

Holland, B. S., Dawson, M. N., Crow, G. L., and Hofmann, D. K. (2004). Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Marine Biology 145, 1119–1128.
Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands.Crossref | GoogleScholarGoogle Scholar |

Holst, S., and Laakmann, S. (2014). Morphological and molecular discrimination of two closely related jellyfish species, Cyanea capillata and C. lamarckii (Cnidaria, Scyphozoa), from the northeast Atlantic. Journal of Plankton Research 36, 48–63.
Morphological and molecular discrimination of two closely related jellyfish species, Cyanea capillata and C. lamarckii (Cnidaria, Scyphozoa), from the northeast Atlantic.Crossref | GoogleScholarGoogle Scholar |

Katoh, K., and Standley, D. M. (2013). MAFFT Multiple sequencing alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
| 1:CAS:528:DC%2BC3sXksFWisLc%3D&md5=9b63ef51572a7695e00dde761602e188CAS |

Kayal, E., Roure, B. A., Philippe, H., Collins, A. G., and Lavrov, D. V. (2013). Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evolutionary Biology 13, 5.
Cnidarian phylogenetic relationships as revealed by mitogenomics.Crossref | GoogleScholarGoogle Scholar |

Kolbasova, G. D., Zalevsky, A. O., Gafurov, A. R., Gusev, P. O., Ezhova, M. A., Zheludkevich, A. A., Konovalova, O. P., Kosobokova, K. N., Kotlov, N. U., Lanina, N. O., Lapashina, A. S., Medvedev, D. O., Nosikova, K. S., Nuzhdina, E. O., Bazykin, G. A., and Neretina, T. V. (2015). A new species of Cyanea jellyfish sympatric to C. capillata in the White Sea. Polar Biology 38, 1439–1451.
A new species of Cyanea jellyfish sympatric to C. capillata in the White Sea.Crossref | GoogleScholarGoogle Scholar |

Kramp, P. L. (1961). Synopsis of the medusae of the world. Journal of the Marine Biological Association of the United Kingdom 40, 7–382.
Synopsis of the medusae of the world.Crossref | GoogleScholarGoogle Scholar |

Krupnick, G. A., and Kress, W. J. (2003). Hotspots and ecoregions: a test of conservation priorities using taxonomic data. Biodiversity and Conservation 12, 2237–2253.
Hotspots and ecoregions: a test of conservation priorities using taxonomic data.Crossref | GoogleScholarGoogle Scholar |

Laguna, J. (1990). Shore barnacles (Cirripedia, Thoracßica) and a revision of their provincialism and transition zones in the Tropical Eastern Pacific. Bulletin of Marine Science 46, 406–424.
Shore barnacles (Cirripedia, Thoracßica) and a revision of their provincialism and transition zones in the Tropical Eastern Pacific.Crossref | GoogleScholarGoogle Scholar |

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.
Clustal W and Clustal X version 2.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaqsL%2FM&md5=644b9e753e37b562db9545aeccc8a580CAS |

Larson, R. J. (1986). Pelagic scyphomedusae (Scyphozoa: Coronatae and Semaeostomeae) of the Southern Ocean. In ‘Biology of the Antarctic Seas XVI’. Antarctic Research Series. pp. 59–165. (American Geophysical Union: Washington, DC.)

Larson, R. (1990). Scyphomedusae and cubomedusae from the eastern Pacific. Bulletin of Marine Science 47, 546–556.

Lavín, M. F., Fiedler, P. C., Amador, J. A., Ballance, L. T., Färber-Lorda, J., and Mestas-Nuñez, A. M. (2006). A review of eastern tropical Pacific oceanography: summary. Progress in Oceanography 69, 391–398.
A review of eastern tropical Pacific oceanography: summary.Crossref | GoogleScholarGoogle Scholar |

Lawing, A. M., Meik, J. M., and Schargel, W. E. (2008). Coding meristic characters for phylogenetic analysis: a comparison of step-matrix gap-weighting and generalized frequency coding. Systematic Biology 57, 167–173.
Coding meristic characters for phylogenetic analysis: a comparison of step-matrix gap-weighting and generalized frequency coding.Crossref | GoogleScholarGoogle Scholar |

Lee, P. L. M., Dawson, M. N, Neill, S. P., Robins, P. E., Houghton, J. D. R., Doyle, T. K., and Hays, G. C. (2013). Identification of genetically and oceanographically distinct blooms of jellyfish. Journal of the Royal Society, Interface 10, 20120920.
Identification of genetically and oceanographically distinct blooms of jellyfish.Crossref | GoogleScholarGoogle Scholar |

Leese, F., Kop, A., Wagele, J. W., and Held, C. (2008). Cryptic speciation in a benthic isopod from Patagonian and Falkland Island waters and the impact of glaciations on its population structure. Frontiers in Zoology 5, 19.
Cryptic speciation in a benthic isopod from Patagonian and Falkland Island waters and the impact of glaciations on its population structure.Crossref | GoogleScholarGoogle Scholar |

Lessios, H. A. (2008). The great American Schism: divergence of marine organisms after the rise of the Central American isthmus. Annual Review of Ecology Evolution and Systematics 39, 63–91.
The great American Schism: divergence of marine organisms after the rise of the Central American isthmus.Crossref | GoogleScholarGoogle Scholar |

Lin, H. C., Sanchez-Ortiz, C., and Hastings, P. A. (2009). Colour variation is incongruent with mitochondrial lineages: cryptic speciation and subsequent diversification in a Gulf of California reef fish (Teleostei: Blennioidei). Molecular Ecology 18, 2476–2488.
Colour variation is incongruent with mitochondrial lineages: cryptic speciation and subsequent diversification in a Gulf of California reef fish (Teleostei: Blennioidei).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlSiurw%3D&md5=d5c67a43c4593f7548f33c11d5463ec0CAS |

Littleford, R. A., and Truitt, R. V. (1937). Variation of Dactylometra quinquecirrha. Science 86, 426–427.
Variation of Dactylometra quinquecirrha.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvotVCjug%3D%3D&md5=7cad5ae8f9a0ca34fb7a472e1ddf8c49CAS |

Lucas, C. H., and Dawson, M. N. (2014). What are jellyfishes and thaliaceans and why do they bloom? In ‘Jellyfish Blooms’. (Eds K. A. Pitt and C. H. Lucas.) pp. 9–44. (Springer: Dordrecht, The Netherlands.)

Maddison, W., and Maddison, D. (2015). Mesquite: a modular system for evolutionary analysis. Ver. 3.04. Available at http://mesquiteproject.org

Mallet, J. (2008). Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363, 2971–2986.
Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation.Crossref | GoogleScholarGoogle Scholar |

Marchese, C. (2015). Biodiversity hotspots: a shortcut for a more complicated concept. Global Ecology and Conservation 3, 297–309.
Biodiversity hotspots: a shortcut for a more complicated concept.Crossref | GoogleScholarGoogle Scholar |

Matsumoto, G. I., Raskoff, K. A., and Lindsay, D. J. (2003). Tiburonia granrojo n. sp., a mesopelagic scyphomedusa from the Pacific Ocean representing the type of a new subfamily (class Scyphozoa: order Semaeostomeae: family Ulmaridae: subfamily Tiburoniinae subfam. nov.). Marine Biology 143, 73–77.
Tiburonia granrojo n. sp., a mesopelagic scyphomedusa from the Pacific Ocean representing the type of a new subfamily (class Scyphozoa: order Semaeostomeae: family Ulmaridae: subfamily Tiburoniinae subfam. nov.).Crossref | GoogleScholarGoogle Scholar |

Mayer, A. G. (1910). ‘Medusae of the World.’ (Carnegie Institution of Washington: Washington, DC.)

Mendelson, T. C., and Shaw, K. L. (2012). The (mis)concept of species recognition. Trends in Ecology & Evolution 27, 421–427.
The (mis)concept of species recognition.Crossref | GoogleScholarGoogle Scholar |

Meyer, C. P., and Paulay, G. (2005). DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3, e422.
DNA barcoding: error rates based on comprehensive sampling.Crossref | GoogleScholarGoogle Scholar |

Mianzan, H. W., and Cornelius, L. (1999). Cubomedusae and scyphomedusae. In ‘South Atlantic Zooplankton’. (Ed. D. Boltovskoy.) pp. 513–519. (Backhuys Press: Leiden, Netherlands.)

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA’. pp. 1–8.

Mishler, B. D. (2010). Species are not uniquely real biological entities. In ‘Contemporary Debates in Philosophy of Biology’. (Eds F. J. Ayala and R. Arp.) pp. 110–122. (Wiley-Blackwell: Chichester, UK.)

Miura, O., Torchin, M. E., and Bermingham, E. (2010). Molecular phylogenetics reveals differential divergence of coastal snails separated by the Isthmus of Panama. Molecular Phylogenetics and Evolution 56, 40–48.
Molecular phylogenetics reveals differential divergence of coastal snails separated by the Isthmus of Panama.Crossref | GoogleScholarGoogle Scholar |

Miura, O., Torchin, M. E., Bermingham, E., Jacobs, D. K., and Hechinger, R. F. (2012). Flying shells: historical dispersal of marine snails across Central America. Proceedings. Biological Sciences 279, 1061–1067.
Flying shells: historical dispersal of marine snails across Central America.Crossref | GoogleScholarGoogle Scholar |

Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., and Worm, B. (2011). How many species are there on Earth and in the ocean? PloS Biology 9, e1001127.
How many species are there on Earth and in the ocean?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2gu7zK&md5=3f0f6cee90e487f1c8e90423f307936aCAS |

Morandini, A. C., and Marques, A. C. (2010). Revision of the genus Chrysaora Peron & Lesueur, 1810 (Cnidaria: Scyphozoa). Zootaxa 2464, 1–97.

Morandini, A., da Silveira, F., and Jarms, G. (2004). The life cycle of Chrysaora lactea Eschscholtz, 1829 (Cnidaria, Scyphozoa, Discomedusae, Semaeostomeae, Pelagiidae) with notes on the scyphistoma stage of three other species. Hydrobiologia 530, 347–354.
The life cycle of Chrysaora lactea Eschscholtz, 1829 (Cnidaria, Scyphozoa, Discomedusae, Semaeostomeae, Pelagiidae) with notes on the scyphistoma stage of three other species.Crossref | GoogleScholarGoogle Scholar |

Moreira, M. G. B. S. (1961). Sobre Mastigias scintillae sp. nov. (Scyphomedusae, Rhizostomeae) das costas do Brasil. Boletim do Instituto Oceanografico 11, 5–30.
Sobre Mastigias scintillae sp. nov. (Scyphomedusae, Rhizostomeae) das costas do Brasil.Crossref | GoogleScholarGoogle Scholar |

Neethling, S., Channing, A., Gershwin, L. A., and Gibbons, M. J. (2011). A modern description of Crambionella stuhlmanni (Scyphozoa: Rhizostomeae) from St Lucia Estuary, South Africa. Journal of the Marine Biological Association of the United Kingdom 91, 357–367.

Nishikawa, J., Ohtsuka, S., Mulyadi, , Mujiono, N., Lindsay, D. J., Miyamoto, H., and Nishida, S. (2015). A new species of the commercially harvested jellyfish Crambionella (Scyphozoa) from central Java, Indonesia with remarks on the fisheries. Journal of the Marine Biological Association of the United Kingdom 95, 471–481.
A new species of the commercially harvested jellyfish Crambionella (Scyphozoa) from central Java, Indonesia with remarks on the fisheries.Crossref | GoogleScholarGoogle Scholar |

Norris, R. D., and Hull, P. M. (2012). The temporal dimension of marine speciation. Evolutionary Ecology 26, 393–415.
The temporal dimension of marine speciation.Crossref | GoogleScholarGoogle Scholar |

Notredame, C., Higgins, D. G., and Heringa, J. (2000). T-Coffee: a novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302, 205–217.
T-Coffee: a novel method for fast and accurate multiple sequence alignment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVGntr8%3D&md5=892caee0d6fa7c32cac0b976439e59dbCAS |

Ocaña-Luna, A., and Gómez-Aguirre, S. (1999). Stomolophus meleagris (Scyphozoa: Rhizostomeae) en dos lagunas costeras de Oaxaca, México. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología 70, 71–77.

Ortman, B. D., Bucklin, A., Pages, F., and Youngbluth, M. (2010). DNA barcoding the Medusozoa using mtCOI. Deep-sea Research. Part II, Topical Studies in Oceanography 57, 2148–2156.
DNA barcoding the Medusozoa using mtCOI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKjt7%2FN&md5=2a322712fef74879d23e9e0a2822a9ecCAS |

Östman, C. (2000). A guideline to nematocyst nomenclature and classification, and some notes on the systematic value of nematocysts. Scientia Marina 64, 31–46.
A guideline to nematocyst nomenclature and classification, and some notes on the systematic value of nematocysts.Crossref | GoogleScholarGoogle Scholar |

Padial, J. M., Miralles, A., De La Riva, I., and Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology 7, 16.
The integrative future of taxonomy.Crossref | GoogleScholarGoogle Scholar |

Palacios-Salgado, D. S., Burnes-Romo, L. A., Tavera, J. J., and Ramírez-Valdez, A. (2012). Endemic fishes of the Cortez biogeographic province (Eastern Pacific Ocean). Acta Ichthyologica et Piscatoria 42, 153–164.
Endemic fishes of the Cortez biogeographic province (Eastern Pacific Ocean).Crossref | GoogleScholarGoogle Scholar |

Palumbi, S. R. (1994). Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics 25, 547–572.
Genetic divergence, reproductive isolation, and marine speciation.Crossref | GoogleScholarGoogle Scholar |

Paterlini, M. (2007). There shall be order. The legacy of Linnaeus in the age of molecular biology. EMBO Reports 8, 814–816.
There shall be order. The legacy of Linnaeus in the age of molecular biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFWksb4%3D&md5=5619bfa366e36772d1124fd19b6a6428CAS |

Pfeiler, E., Watts, T., Pugh, J., and Van DerHeiden, A. M. (2008). Speciation and demographic history of the Cortez bonefish, Albula sp. A (Albuliformes: Albulidae), in the Gulf of California inferred from mitochondrial DNA. Journal of Fish Biology 73, 382–394.
Speciation and demographic history of the Cortez bonefish, Albula sp. A (Albuliformes: Albulidae), in the Gulf of California inferred from mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCitb%2FM&md5=7462616c6ec051c7eb418d2a68d3f673CAS |

Piraino, S., Aglieri, G., Martell, L., Mazzoldi, C., Melli, V., Milisenda, G., Scorrano, S., and Boero, F. (2014). Pelagia benovici sp. nov. (Cnidaria, Scyphozoa): a new jellyfish in the Mediterranean Sea. Zootaxa 3794, 455–468.
Pelagia benovici sp. nov. (Cnidaria, Scyphozoa): a new jellyfish in the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |

Pires, A. C., and Marinoni, L. (2010). DNA barcoding and traditional taxonomy unified through integrative taxonomy: a view that challenges the debate questioning both methodologies. Biota Neotropica 10, 339–346.
DNA barcoding and traditional taxonomy unified through integrative taxonomy: a view that challenges the debate questioning both methodologies.Crossref | GoogleScholarGoogle Scholar |

Platnick, N. I. (2012). The poverty of the PhyloCode: a reply to de Queiroz and Donoghue. Systematic Biology 61, 360–361.
The poverty of the PhyloCode: a reply to de Queiroz and Donoghue.Crossref | GoogleScholarGoogle Scholar |

Rambaut, A., Suchard, M. A., Xie, D., and Drummond, A. J. (2014). Tracer v1.6. Available at http://beast.bio.ed.ac.uk/Tracer

Raskoff, K., and Matsumoto, G. I. (2004). Stellamedusa ventana, a new mesopelagic scyphomedusa from the eastern Pacific representing a new subfamily, the Stellamedusinae. Journal of the Marine Biological Association of the United Kingdom 84, 37–42.
Stellamedusa ventana, a new mesopelagic scyphomedusa from the eastern Pacific representing a new subfamily, the Stellamedusinae.Crossref | GoogleScholarGoogle Scholar |

Robertson, D. R., and Cramer, K. L. (2009). Shore fishes and biogeographic subdivisions of the Tropical Eastern Pacific. Marine Ecology Progress Series 380, 1–17.
Shore fishes and biogeographic subdivisions of the Tropical Eastern Pacific.Crossref | GoogleScholarGoogle Scholar |

Rocha, L. A., Lindeman, K. C., Rocha, C. R., and Lessios, H. A. (2008). Historical biogeography and speciation in the reef fish genus Haemulon (Teleostei: Haemulidae). Molecular Phylogenetics and Evolution 48, 918–928.
Historical biogeography and speciation in the reef fish genus Haemulon (Teleostei: Haemulidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyntL3L&md5=28ba4c2803ee15becc8627abdb434a7eCAS |

Roden, G. (1958). Oceanographic and meteorological aspects of the Gulf of California. Pacific Science 12, 20–46.

Rodríguez-Sáenz, K., and Segura-Puertas, L. (2009). Hydrozoa, Scyphozoa, and Cubozoa (Medusozoa). In ‘Marine Biodiversity of Costa Rica, Central America’. (Eds I. S. Wehrtmann and J. Cortés.) pp. 143–149. (Springer: Dordrecht, Netherlands.)

Roux, J.-P., van der Lingen, C. D., Gibbons, M. J., Moroff, N. E., Shannon, L. J., Smith, A. D., and Cury, P. M. (2013). Jellyfication of marine ecosystems as a likely consequence of overfishing small pelagic fishes: lessons from the Benguela. Bulletin of Marine Science 89, 249–284.
Jellyfication of marine ecosystems as a likely consequence of overfishing small pelagic fishes: lessons from the Benguela.Crossref | GoogleScholarGoogle Scholar |

Russell, F. S. (1970). ‘The Medusae of the British Isles.’ (Cambridge University Press: UK.)

Sandrini, L. R., and Avian, M. (1983). Biological cycle of Pelagia noctiluca: morphological aspects of the development from planula to ephyra. Marine Biology 74, 169–174.
Biological cycle of Pelagia noctiluca: morphological aspects of the development from planula to ephyra.Crossref | GoogleScholarGoogle Scholar |

Scheffers, B. R., Joppa, L. N., Pimm, S. L., and Laurance, W. F. (2012). What we know and don’t know about Earth’s missing biodiversity. Trends in Ecology & Evolution 27, 501–510.
What we know and don’t know about Earth’s missing biodiversity.Crossref | GoogleScholarGoogle Scholar |

Schembri, P. J., Deidun, A., and Vella, P. J. (2010). First record of Cassiopea andromeda (Scyphozoa: Rhizostomeae: Cassiopeidae) from the central Mediterranean Sea. Marine Biodiversity Records 3, e6.
First record of Cassiopea andromeda (Scyphozoa: Rhizostomeae: Cassiopeidae) from the central Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |

Schiariti, A., Kawahara, M., Uye, S., and Mianzan, H. W. (2008). Life cycle of the jellyfish Lychnorhiza lucerna (Scyphozoa: Rhizostomeae). Marine Biology 156, 1–12.
Life cycle of the jellyfish Lychnorhiza lucerna (Scyphozoa: Rhizostomeae).Crossref | GoogleScholarGoogle Scholar |

Schiariti, A., Morandini, A. C., Jarms, G., von Glehn Paes, R., Franke, S., and Mianzan, H. (2014). Asexual reproduction strategies and blooming potential in Scyphozoa. Marine Ecology Progress Series 510, 241–253.
Asexual reproduction strategies and blooming potential in Scyphozoa.Crossref | GoogleScholarGoogle Scholar |

Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., and Crozier, R. H. (2010). Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology 55, 421–438.
Integrative taxonomy: a multisource approach to exploring biodiversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVShtQ%3D%3D&md5=bd48b7260df87fe6c1a49a7f9f380984CAS |

Schlick-Steiner, B. C., Arthofer, W., and Steiner, F. M. (2014). Take up the challenge! Opportunities for evolution research from resolving conflict in integrative taxonomy. Molecular Ecology 23, 4192–4194.
Take up the challenge! Opportunities for evolution research from resolving conflict in integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Segura-Puertas, L. (1984). Morfología, sistemática y zoogeografía de las medusas Cnidarias: (Hydrozoa y Scyphozoa) del Pacífico Tropical oriental. Publicaciones Especiales Instituto de Ciencias del Mar y Limnología 8, 1–320.

Segura-Puertas, L., Suárez-Morales, E., and Celis, L. (2003). A checklist of the Medusae (Hydrozoa, Scyphozoa and Cubozoa) of Mexico. Zootaxa 194, 1–15.
A checklist of the Medusae (Hydrozoa, Scyphozoa and Cubozoa) of Mexico.Crossref | GoogleScholarGoogle Scholar |

Sites, J., and Marshall, J. (2003). Delimiting species: a renaissance issue in systematic biology. Trends in Ecology & Evolution 18, 462–470.
Delimiting species: a renaissance issue in systematic biology.Crossref | GoogleScholarGoogle Scholar |

Srivathsan, A., and Meier, R. (2012). On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics 28, 190–194.
On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature.Crossref | GoogleScholarGoogle Scholar |

StataCorp. (2011). ‘Stata Statistical Software: Release 12.’ (StataCorp LP: College Station, TX.)

Stiasny, G. (1921). Studien über Rhizostomeen mit besonderer berücksichtigung der fauna des Malaiischen archipels nebsteiner revision des systems. Capita Zoologica 1, 1–179.

Straehler-Pohl, I., Widmer, C. L., and Morandini, A. C. (2011). Characterizations of juvenile stages of some semaeostome Scyphozoa (Cnidaria), with recognition of a new family (Phacellophoridae). Zootaxa 2741, 1–37.
Characterizations of juvenile stages of some semaeostome Scyphozoa (Cnidaria), with recognition of a new family (Phacellophoridae).Crossref | GoogleScholarGoogle Scholar |

Sukumaran, J., and Holder, M. T. (2010). DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571.
DendroPy: a Python library for phylogenetic computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVOltb0%3D&md5=653c492eebb410f678a8c14346de2db4CAS |

Swift, H. F., Gómez Daglio, L., and Dawson, M. N (2016). Three routes to crypsis: stasis, convergence and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae). Molecular Phylogenetics and Evolution 99, 103–115.
Three routes to crypsis: stasis, convergence and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28jptFartg%3D%3D&md5=c72ac72384a23cc61bf02809c574d4d6CAS |

Swofford, D. L. (2002). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.’ (Sinauer Associates: Sunderland, MA.)

Terlizzi, A., Bevilacqua, S., Fraschetti, S., and Boero, F. (2003). Taxonomic sufficiency and the increasing insufficiency of taxonomic expertise. Marine Pollution Bulletin 46, 556–561.
Taxonomic sufficiency and the increasing insufficiency of taxonomic expertise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVaqtLw%3D&md5=eb772ff228211865ccd7350015117006CAS |

Valdecasas, A. G., Williams, D., and Wheeler, Q. D. (2008). ‘Integrative taxonomy’ then and now: a response to Dayrat (2005). Biological Journal of the Linnean Society. Linnean Society of London 93, 211–216.
‘Integrative taxonomy’ then and now: a response to Dayrat (2005).Crossref | GoogleScholarGoogle Scholar |

van Velzen, R., Weitschek, E., Felici, G., and Bakker, F. T. (2012). DNA barcoding of recently diverged species: relative performance of matching methods. PLoS One 7, e30490.
DNA barcoding of recently diverged species: relative performance of matching methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVarur8%3D&md5=f9945420d54dda335f39bdf35867088dCAS |

Vanhöffen, E. (1888). Untersuchungen über Semaeostome und Rhizostome medusen. Bibliotheca Zoologica 3, 1–51.

Vanhöffen, E. (1902). ‘Die Acraspeden medusen der deutschen Tiefsee-expedition 1898–1899’. (Jena: Leipzig)

Velasco, J. D. (2009). When monophyly is not enough: exclusivity as the key to defining a phylogenetic species concept. Biology & Philosophy 24, 473–486.
When monophyly is not enough: exclusivity as the key to defining a phylogenetic species concept.Crossref | GoogleScholarGoogle Scholar |

Vermeij, G. J., and Petuch, E. J. (1986). Differential extinction in tropical American mollusks endemism, architecture, and Panama land-bridge. Malacologia 27, 29–41.

Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., and Barton, G. J. (2009). Jalview Version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191.
Jalview Version 2 – a multiple sequence alignment editor and analysis workbench.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFWis7Y%3D&md5=abdf9526bf2bb2249cdd65a936c5235fCAS |

Wheeler, Q. D. (2004). Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359, 571–583.
Taxonomic triage and the poverty of phylogeny.Crossref | GoogleScholarGoogle Scholar |

Wheeler, Q. D. (2005). Losing the plot: DNA ‘barcodes’ and taxonomy. Cladistics 21, 405–407.
Losing the plot: DNA ‘barcodes’ and taxonomy.Crossref | GoogleScholarGoogle Scholar |

Wheeler, Q. D., and Platnick, N. I. (2000). The phylogenetic species concept. In ‘Species Concept and Phylogenetic Theory: a Debate.’ (Eds Q. D. Wheeler and R. Meier.) pp. 55–69. (Columbia Press University: New York, NY.)

Widmer, C. L. (2008). Life cycle of Chrysaora fuscescens (Cnidaria: Scyphozoa) and a key to sympatric ephyrae. Pacific Science 62, 71–82.
Life cycle of Chrysaora fuscescens (Cnidaria: Scyphozoa) and a key to sympatric ephyrae.Crossref | GoogleScholarGoogle Scholar |

Wiens, J. J. (2007). Species delimitation: new approaches for discovering diversity. Systematic Biology 56, 875–878.
Species delimitation: new approaches for discovering diversity.Crossref | GoogleScholarGoogle Scholar |

Wiens, J. J. (2011). The causes of species richness patterns across space, time, and clades and the role of ‘ecological limits’. The Quarterly Review of Biology 86, 75–96.
The causes of species richness patterns across space, time, and clades and the role of ‘ecological limits’.Crossref | GoogleScholarGoogle Scholar |

Wiens, J. J., and Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in Ecology & Evolution 19, 639–644.
Historical biogeography, ecology and species richness.Crossref | GoogleScholarGoogle Scholar |

Will, K. W., Mishler, B. D., and Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 54, 844–851.
The perils of DNA barcoding and the need for integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Yeates, D. K., Seago, A., Nelsom, L., Cameron, S. L., Joseph, L., and Trueman, J. W. H. (2011). Integrative taxonomy, or iterative taxonomy? Systematic Entomology 36, 209–217.
Integrative taxonomy, or iterative taxonomy?Crossref | GoogleScholarGoogle Scholar |

Zapata, F. A., and Robertson, D. R. (2007). How many species of shore fishes are there in the Tropical Eastern Pacific? Journal of Biogeography 34, 38–51.
How many species of shore fishes are there in the Tropical Eastern Pacific?Crossref | GoogleScholarGoogle Scholar |

Zapata, F., Goetz, F. E., Smith, S. A., Howison, M., Siebert, S., Church, S. H., Sanders, S. M., Ames, C. L., Mcfadden, C. S., France, S. C., Daly, M., Collins, A. G., Haddock, S. H. D., Dunn, C. W., and Cartwright, P. (2015). Phylogenomic analyses support traditional relationships within Cnidaria. PLoS One 10, e0139068.
Phylogenomic analyses support traditional relationships within Cnidaria.Crossref | GoogleScholarGoogle Scholar |

Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the Maximum Likelihood criterion. Ph.D. Thesis, The University of Texas, Austin.