Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Towards a dated molecular phylogeny of the Tanypodinae (Chironomidae, Diptera)

M. N. Krosch A , P. S. Cranston B D , L. M. Bryant A , F. Strutt A and S. R. McCluen C
+ Author Affiliations
- Author Affiliations

A School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Qld 4001, Australia.

B Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.

C Entomology and Nematology, University of California, Davis, CA 95616, USA.

D Corresponding author. Email: pscranston@gmail.com

Invertebrate Systematics 31(3) 302-316 https://doi.org/10.1071/IS16046
Submitted: 8 July 2016  Accepted: 15 December 2016   Published: 12 May 2017

Abstract

A dated molecular phylogeny is proposed for the Tanypodinae, a diverse subfamily of Chironomidae (Diptera). We used molecular data from fragments of one ribosomal gene (28S), one nuclear protein-coding gene (CAD), and one mitochondrial protein-coding gene (COI), analysed using mixed model Bayesian and maximum likelihood inference methods. All proposed tribes were sampled, namely, Anatopyniini, Clinotanypodini, Coelopyniini, Fittkauimyiini, Macropelopiini, Natarsiini, Pentaneurini, Procladiini and Tanypodini. A multilocus dataset of 1938 characters was compiled from 123 individuals including outgroups. Monophyly was supported for all tribes although some relationships were not robust. Relationships between tribes and some genus groups are highly congruent with a morphology-based estimate. Relationships within tribe Pentaneurini mostly find weak support, yet previously hypothesised groupings and monophyly or lack thereof in well-sampled genera are revealed. The tempo of diversification of the family was deduced by divergence time analysis (BEAST). Origination of a subfamily stem group in the late Jurassic to early Cretaceous was inferred, with all tribes and many genera of Pentaneurini originating and diversifying in the Cretaceous. Some nodes are biogeographically informative. Gene sections supported the backbone, but more extensive sampling is needed to estimate shallower phylogenies and to better understand the tempo and diversification of Tanypodinae.

Additional keywords: Cretaceous, diversification, Insecta, monophyly, rank, tempo.


References

Andersen, T., and Sæther, O. A. (1994). Usambaromyia nigrala gen. n., sp. n., and Usambaromyiinae, a new subfamily among the Chironomidae (Diptera). Aquatic Insects 16, 21–29.
Usambaromyia nigrala gen. n., sp. n., and Usambaromyiinae, a new subfamily among the Chironomidae (Diptera).Crossref | GoogleScholarGoogle Scholar |

Beck, W. M., and Beck, E. C. (1966). Chironomidae (Diptera) of Florida. I. Pentaneurini (Tanypodinae). Bulletin of the Florida Museum of Natural History – Biological Sciences 10, 305–379.

Brundin, L. (1966). Transantarctic relationships and their significance, as evidenced by chironomid midges with a monograph of the subfamilies Podonominae and Aphroteniinae and the austral Heptagyiae. Kungl. Svenska Vetenskapsakademiens Handlingar 11, 1–472.

Brundin, L. (1983). Chilenomyia paradoxa gen. n., sp. n. and Chilenomyiinae, a new subfamily among the Chironomidae (Diptera). Entomologica Scandinavica 14, 33–45.
Chilenomyia paradoxa gen. n., sp. n. and Chilenomyiinae, a new subfamily among the Chironomidae (Diptera).Crossref | GoogleScholarGoogle Scholar |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=12c15c65b143ca193ea00e1aa007f6b7CAS |

Cranston, P. S. (2000). The electronic guide to the Chironomidae of Australia. Available at http://apes.skullisland.info/node/3 [verified 13 March 2017].

Cranston, P. S. (2004). Insecta: Diptera: Chironomidae. In ‘The Freshwater Invertebrates of Malaysia, and Singapore’. (Eds C. M. Yule and H. S. Yong.) pp. 711–735. (Academy of Sciences: Malaysia.)

Cranston, P. S., and Epler, J. (2013). The larvae of Tanypodinae (Diptera: Chironomidae) of the Holarctic Region – keys and diagnoses. Insect Systematics and Evolution Supplements 66, 39–136.

Cranston, P. S., and Krosch, M. (2015). Evidence from molecules, and morphology expands Podonomopsis Brundin (Diptera: Chironomidae: Podonominae) to include ‘genus Chile’. Invertebrate Systematics 29, 610–627.
Evidence from molecules, and morphology expands Podonomopsis Brundin (Diptera: Chironomidae: Podonominae) to include ‘genus Chile’.Crossref | GoogleScholarGoogle Scholar |

Cranston, P. S., Edward, D. H. D., and Colless, D. H. (1987). Archaeochlus Brundin: a midge out of time (Diptera: Chironomidae). Systematic Entomology 12, 313–334.
Archaeochlus Brundin: a midge out of time (Diptera: Chironomidae).Crossref | GoogleScholarGoogle Scholar |

Cranston, P. S., Hardy, N. B., Morse, G. E., Puslednik, L., and McCluen, S. R. (2010). When molecules, and morphology concur: the Gondwanan midges (Diptera: Chironomidae). Systematic Entomology 35, 636–648.
When molecules, and morphology concur: the Gondwanan midges (Diptera: Chironomidae).Crossref | GoogleScholarGoogle Scholar |

Cranston, P.S., Hardy, N.B., and Morse, G.E. (2012). A dated molecular phylogeny for the Chironomidae (Diptera). Systematic Entomology 37, 172–188.
A dated molecular phylogeny for the Chironomidae (Diptera).Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., Ho, S. Y. W., Phillips, M. J., and Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.
Relaxed phylogenetics and dating with confidence.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti, and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
Bayesian phylogenetics with BEAUti, and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu7fO&md5=1128fe2c54a768f2b18bd3a1ecbe3c88CAS |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy, and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy, and high throughput.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=3779829e13a4c162ef008e41e63c789fCAS |

Epler, J. H. (1986). The larva of Radotanypus submarginella (Sublette). Spixiana 9, 285–287.

Epler, J. H. (2001). ‘Identification Manual for the Larval Chironomidae (Diptera) of North, and South Carolina. A Guide to the Taxonomy of the Midges of the Southeastern United States, Including Florida. Special Publication SJ2001–SP13.’ (North Carolina Department of Environment, and Natural Resources: Raleigh, NC, and St Johns River Water Management District: Palatka, FL.)

Fittkau, E. J. (1962). Die Tanypodinae (Diptera: Chironomidae). (Die tribus Anatopynyiini, Macropelopiini und Pentaneurini). Abhandlungen zur Larvensystematik der Insekten 6, 1–453.

Fittkau, E. J., and Roback, S. S. (1983). The larvae of the Tanypodinae (Diptera: Chironomidae) of the Holarctic Region – keys, and diagnoses. In ‘Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1: Larvae. Entomologica Scandinavica Supplement’. (Ed. T. Wiederholm.) pp. 33–110.

Goetghebuer, M. (1914). Contribution a l’étude des Chironomides de Belgique. Annales de Biologie Lacustre 7, 165–229.

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor, and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=01675b96feb07335d6568390e1c23744CAS |

Huelsenbeck, J. P., and Ronquist, F. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
MrBayes: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=82e415832d42a58a58bf16a79056e67dCAS |

Kalugina, N. S., and Kovalev, V. G. (1985). ‘Dipterous Insects from the Jurassic of Siberia.’ (Academy of Sciences: Moscow.)

Krosch, M. N., and Cranston, P. S. (2012). Non-destructive DNA extraction, including of fragile pupal exuviae, extends analysable collections, and enhances vouchering. Chironomus 25, 22–27.

Krosch, M. N., and Cranston, P. S. (2013). Not drowning, (hand)waving? Molecular phylogenetics, biogeography and evolutionary tempo of the ‘gondwanan’ midge Stictocladius Edwards (Diptera: Chironomidae). Molecular Phylogenetics and Evolution 68, 595–603.
Not drowning, (hand)waving? Molecular phylogenetics, biogeography and evolutionary tempo of the ‘gondwanan’ midge Stictocladius Edwards (Diptera: Chironomidae).Crossref | GoogleScholarGoogle Scholar |

Krosch, M. N., Baker, A. M., Mather, P. B., and Cranston, P. S. (2011). Spatial population genetic structure reveals strong natal site fidelity in Echinocladius martini (Diptera: Chironomidae) in northeast Queensland, Australia. Freshwater Biology 56, 1328–1341.
Spatial population genetic structure reveals strong natal site fidelity in Echinocladius martini (Diptera: Chironomidae) in northeast Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Krzeminski, W., and Jarzembowski, E. (1999). Aenne triassica sp. n., the oldest representatives of the family Chironomidae (Insecta: Diptera). Polskie Pismo Entomologiczne 68, 445–449.

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA’. pp. 1–8.

Moulton, J. K., and Wiegmann, B. M. (2004). Evolution, and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged Eremoneuran Diptera (Insecta). Molecular Phylogenetics and Evolution 31, 363–378.
Evolution, and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged Eremoneuran Diptera (Insecta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFSksbw%3D&md5=e25bb845d6b0556db8b1d0bce029bf2fCAS |

Rambaut, A., and Drummond, A. J. (2009). Tracer v1.5. Available at http://beast.bio.ed.ac.uk/Tracer [verified 21 March 2017].

Roback, S. S. (1971). The adults of the subfamily Tanypodinae (=Pelopiinae) in North America (Diptera: Chironomidae). Monographs – Academy of Natural Sciences of Philadelphia 17, 151–202.

Roback, S. S. (1976). The immature chironomids of the eastern United States I. Introduction, and Tanypodinae-Coelotanypodini. Proceedings of the Academy of Natural Sciences of Philadelphia 127, 147–201.

Roback, S. S. (1977). The immature chironomids of the eastern United States II. Tanypodinae-Tanypodini. Proceedings of the Academy of Natural Sciences of Philadelphia 128, 55–88.

Roback, S. S. (1978). The immature chironomids of the eastern United States III. Tanypodinae-Anatopyniini, Macropelopiini, and Natarsiini. Proceedings of the Academy of Natural Sciences of Philadelphia 129, 151–202.

Roback, S. S. (1981). The immature chironomids of the eastern United States V. Pentaneurini-Thienemannimyia group. Proceedings of the Academy of Natural Sciences of Philadelphia 133, 73–128.

Roback, S. S. (1982a). The immature stages of some Australian Tanypodinae (Diptera), with some notes on the adults. Journal of the Australian Entomological Society 9, 1–152.

Roback, S. S. (1982b). The Tanypodinae (Diptera: Chironomidae) of Australia II. Proceedings of the Academy of Natural Sciences of Philadelphia 134, 80–112.

Roback, S. S. (1989). The larval development of Djalmabatista pulcher (Joh.) (Diptera: Chironomidae: Tanypodinae). Proceedings of the Academy of Natural Sciences of Philadelphia 141, 73–84.

Roback, S. S., and Moss, W. W. (1978). Numerical taxonomic studies on the congruence of classifications for the genera, and subgenera of Macropelopiini, and Anatopyniini (Diptera: Chironomidae: Tanypodinae). Proceedings of the Academy of Natural Sciences of Philadelphia 129, 125–150.

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=551961d8686b21e6a8f449a4435c2cfdCAS |

Sæther, O. A. (1977). Female genitalia in Chironomidae, and other Nematocera: morphology, phylogenies, keys. Bulletin – Fisheries Research Board of Canada 197, 1–204.

Sæther, O. A., and Andersen, T. (2000). Djalmabatista reidi (Freeman) comb. n., and Lepidopelopia annulator (Goetghebuer), two interesting macropelopine tanypods from Ghana (Diptera: Chironomidae). In ‘Late 20th Century Research on Chironomidae: an Anthology from the 13th International Symposium on Chironomidae’. (Ed. O. Hoffrichter.) pp. 209–220. (Shaker Verlag: Aachen.)

Silva, F. L. D., and Ekrem, T. (2016). Phylogenetic relationships of nonbiting midges in the subfamily Tanypodinae (Diptera: Chironomidae) inferred from morphology. Systematic Entomology 41, 73–92.
Phylogenetic relationships of nonbiting midges in the subfamily Tanypodinae (Diptera: Chironomidae) inferred from morphology.Crossref | GoogleScholarGoogle Scholar |

Silva, F. L., Fonseca-Gessner, A. A., and Ekrem, T. (2011). Revision of Labrundinia maculata Roback, 1971, a new junior synonym of L. longipalpis (Goetghebuer, 1921) (Diptera: Chironomidae: Tanypodinae). Aquatic Insects 33, 293–303.
Revision of Labrundinia maculata Roback, 1971, a new junior synonym of L. longipalpis (Goetghebuer, 1921) (Diptera: Chironomidae: Tanypodinae).Crossref | GoogleScholarGoogle Scholar |

Silva, F. L., Ekrem, T., and Fonseca-Gessner, A. A. (2013). DNA barcodes for species delimitation in Chironomidae (Diptera): a case study on the genus Labrundinia. Canadian Entomologist 145, 589–602.
DNA barcodes for species delimitation in Chironomidae (Diptera): a case study on the genus Labrundinia.Crossref | GoogleScholarGoogle Scholar |

Siri, A., and Donato, M. (2015). Phylogenetic analysis of the tribe Macropelopiini (Chironomidae: Tanypodinae): adjusting homoplasies. Zoological Journal of the Linnean Society 174, 74–92.
Phylogenetic analysis of the tribe Macropelopiini (Chironomidae: Tanypodinae): adjusting homoplasies.Crossref | GoogleScholarGoogle Scholar |

Skuse, A. A. (1889). Diptera of Australia. Part VI. The Chironomidae. Proceedings of the Linnean Society of New South Wales 4, 215–311.

Spies, M. (2005). On selected family-group names in Chironomidae (Insecta, Diptera), and related nomenclature. Zootaxa 894, 1–12.
On selected family-group names in Chironomidae (Insecta, Diptera), and related nomenclature.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa, and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa, and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=c868f257e775d7586364223c6888c21aCAS |

Thienemann, A., and Zavřel, J. (1916). Die metamorphose der tanypinen. Archiv für Hydrobiologie und Planktonkunde 2, 566–654.

Veltz, I., Azar, D., and Nel, A. (2007). New chironomid flies in Early Cretaceous Lebanese amber (Diptera: Chironomidae). African Invertebrates 48, 169–191.

Zavřel, J. (1929). Larvy a kukly pakomaru. (Chironomidae). Zpravy komise na pířodovĕdecký výzkum Moravy a Slezska. Oddĕlení Zoologické 18, 1–51.