Pseudoscorpions of the family Feaellidae (Pseudoscorpiones : Feaelloidea) from the Pilbara region of Western Australia show extreme short-range endemism
Mark S. Harvey A B C D F , Kym M. Abrams A B , Amber S. Beavis A E , Mia J. Hillyer A and Joel A. Huey A BA Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia.
B School of Animal Biology, University of Western Australia, Crawley, WA 6009, Australia.
C School of Natural Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
D Division of Invertebrate Zoology, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024-5192, USA; Department of Entomology, California Academy of Sciences, Golden Gate Park, San Francisco, CA 94103-3009, USA.
E Present address: Office of the Chief Scientist, Industry House, 10 Binara Street, Canberra City, ACT 2601, Australia.
F Corresponding author. Email: mark.harvey@museum.wa.gov.au
Invertebrate Systematics 30(5) 491-508 https://doi.org/10.1071/IS16013
Submitted: 12 February 2016 Accepted: 27 April 2016 Published: 31 October 2016
Abstract
The phylogenetic relationships of the Australian species of Feaellidae are assessed with a molecular analysis using mitochondrial (CO1) and nuclear (ITS2) data. These results confirm the morphological analysis that three previously undescribed species occur in the Pilbara bioregion, which are named and described: Feaella (Tetrafeaella) callani, sp. nov., F. (T.) linetteae, sp. nov. and F. (T.) tealei, sp. nov. The males of these three species, as well as males of F. anderseni Harvey and other unnamed species from the Kimberley region of north-western Australia, have a pair of enlarged, thick-walled bursa that are not found in other feaellids. Despite numerous environmental impact surveys for short-range endemic invertebrates in the Pilbara, very few specimens have been collected, presumably due to their relictual distributions, restricted habitat preferences and low densities.
http://zoobank.org/urn:lsid:zoobank.org:pub:131F0587-F2EE-405F-BE5A-772F072D9915
Additional keywords: morphology, new species, taxonomy, threatened species.
References
Agnarsson, I. (2010). The utility of ITS2 in spider phylogenetics: notes on prior work and an example from Anelosimus. The Journal of Arachnology 38, 377–382.| The utility of ITS2 in spider phylogenetics: notes on prior work and an example from Anelosimus.Crossref | GoogleScholarGoogle Scholar |
Arabi, J., Judson, M. L., Deharveng, L., Lourenco, W. R., Cruaud, C., and Hassanin, A. (2012). Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements. Journal of Molecular Evolution 74, 81–95.
| Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xktlaktr0%3D&md5=c35cf3c7b9cfae91dcb2e7d48bb4b2a9CAS | 22362465PubMed |
Beier, M. (1932). Pseudoscorpionidea II. Subord. C. Cheliferinea. Das Tierreich 58, i–xxi, 1–294.
Beier, M. (1955). Pseudoscorpionidea, gesammelt während der schwedischen Expeditionen nach Ostafrika 1937–38 und 1948. Arkiv för Zoologi, Ser. 2 7, 527–558.
Beier, M. (1964). Weiteres zur Kenntnis der Pseudoscorpioniden-Fauna des südlichen Afrika. Annals of the Natal Museum 16, 30–90.
Ben-David, T., Melamed, S., Gerson, U., and Morin, S. (2007). ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae). Experimental & Applied Acarology 41, 169–181.
| ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari: Tetranychidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlymur0%3D&md5=453fa856de4370417edc63ee23e7d75fCAS |
Benedict, E. M., and Malcolm, D. R. (1978). The family Pseudogarypidae (Pseudoscorpionida) in North America with comments on the genus Neopseudogarypus Morris from Tasmania. The Journal of Arachnology 6, 81–104.
Bragagnolo, C., Pinto-da-Rocha, R., Antunes, M., and Clouse, R. M. (2015). Phylogenetics and phylogeography of a long-legged harvestman (Arachnida: Opiliones) in the Brazilian Atlantic Rain Forest reveals poor dispersal, low diversity and extensive mitochondrial introgression. Invertebrate Systematics 29, 386–404.
| Phylogenetics and phylogeography of a long-legged harvestman (Arachnida: Opiliones) in the Brazilian Atlantic Rain Forest reveals poor dispersal, low diversity and extensive mitochondrial introgression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVSru7fJ&md5=47abf0f4dc5897d825ebe9b46b56ffbbCAS |
Castalanelli, M. A., Severtson, D. L., Brumley, C. J., Szito, A., Foottit, R. G., Grimm, M., Munyard, K., and Groth, D. M. (2010). A rapid non-destructive DNA extraction method for insects and other arthropods. Journal of Asia-Pacific Entomology 13, 243–248.
| A rapid non-destructive DNA extraction method for insects and other arthropods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFelsrvJ&md5=22c45937b0a80fcb889bd95db2a731a9CAS |
Castalanelli, M. A., Teale, R., Rix, M. G., Kennington, J. W., and Harvey, M. S. (2014). Barcoding of mygalomorph spiders (Araneae: Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota. Invertebrate Systematics 28, 375–385.
| 1:CAS:528:DC%2BC2cXhsFKntr7J&md5=2b9978280e3a06f975e381e0232a8f56CAS |
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
| Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=7270e7b94b46ec4a30ad5328609b8552CAS | 10742046PubMed |
Chamberlin, J. C. (1931). The arachnid order Chelonethida. Stanford University Publications, Biological Sciences 7, 1–284.
Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
| jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWmsbfP&md5=b326576d8549dc5561e70b14d1339c77CAS | 22847109PubMed |
Durrant, B. J., Harvey, M. S., Framenau, V. W., Ott, R., and Waldock, J. M. (2010). Patterns in the composition of ground-dwelling spider communities in the Pilbara bioregion, Western Australia. Records of the Western Australian Museum 78, 185–204.
| Patterns in the composition of ground-dwelling spider communities in the Pilbara bioregion, Western Australia.Crossref | GoogleScholarGoogle Scholar |
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
| MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ks7w%3D&md5=9d94fe4230b53e1213abb545ddca7e97CAS | 15034147PubMed |
Ellingsen, E. (1906). Report on the pseudoscorpions of the Guinea Coast (Africa) collected by Leonardo Fea. Annali del Museo Civico di Storia Naturale di Genova, Ser. 3 2, 243–265.
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=3ed3b40952948838a8ebb6c4cd36ee0cCAS | 7881515PubMed |
Giribet, G., Carranza, S., Baguñà, J., Riutort, M., and Ribera, C. (1996). First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13, 76–84.
| First molecular evidence for the existence of a Tardigrada + Arthropoda clade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVylur8%3D&md5=8501731e5196d8ed2d5eacbe2e19f3f0CAS | 8583909PubMed |
Harms, D., and Framenau, V. W. (2013). New species of mouse spiders (Araneae: Mygalomorphae: Actinopodidae: Missulena) from the Pilbara region, Western Australia. Zootaxa 3637, 521–540.
| 26046218PubMed |
Harvey, M. S. (1989). A new species of Feaella Ellingsen from north-western Australia (Pseudoscorpionida: Feaellidae). Bulletin of the British Arachnological Society 8, 41–44.
Harvey, M. S. (1991). ‘Catalogue of the Pseudoscorpionida.’ (Manchester University Press: Manchester, UK.)
Harvey, M. S. (1992). The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida). Invertebrate Taxonomy 6, 1373–1435.
| The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida).Crossref | GoogleScholarGoogle Scholar |
Harvey, M. S. (2013). Pseudoscorpions of the World, version 3.0. Western Australian Museum, Perth. Available at http://museum.wa.gov.au/catalogues-beta/pseudoscorpions [Accessed 4 February 2016].
Harvey, M. S., Berry, O., Edward, K. L., and Humphreys, G. (2008). Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semi-arid Australia. Invertebrate Systematics 22, 167–194.
| Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semi-arid Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslajsr8%3D&md5=f19d73a9bbf994327239e28df9a0b5ceCAS |
Harvey, F. S. B., Framenau, V. W., Wojcieszek, J. M., Rix, M. G., and Harvey, M. S. (2012a). Molecular and morphological characterisation of new species in the trapdoor spider genus Aname (Araneae: Mygalomorphae: Nemesiidae) from the Pilbara bioregion of Western Australia. Zootaxa 3383, 15–38.
| Molecular and morphological characterisation of new species in the trapdoor spider genus Aname (Araneae: Mygalomorphae: Nemesiidae) from the Pilbara bioregion of Western Australia.Crossref | GoogleScholarGoogle Scholar |
Harvey, M. S., Ratnaweera, P. B., Udagama, P. V., and Wijesinghe, M. R. (2012b). A new species of the pseudoscorpion genus Megachernes (Pseudoscorpiones: Chernetidae) associated with a threatened Sri Lankan rainforest rodent, with a review of host associations of Megachernes. Journal of Natural History 46, 2519–2535.
| A new species of the pseudoscorpion genus Megachernes (Pseudoscorpiones: Chernetidae) associated with a threatened Sri Lankan rainforest rodent, with a review of host associations of Megachernes.Crossref | GoogleScholarGoogle Scholar |
Harvey, M. S., Andrade, R., and Pinto-da-Rocha, R. (2016). The first New World species of the pseudoscorpion family Feaellidae (Pseudoscorpiones: Feaelloidea), from the Mata Atlântica biome. Journal of Arachnology 44, 227–234.
Henderickx, H., and Boone, M. (2014). The first fossil Feaella Ellingsen, 1906, representing an unexpected pseudoscorpion family in Baltic Amber (Pseudoscorpiones, Feaellidae). Entomo-Info 25, 5–11.
Heurtault-Rossi, J., and Jézéquel, J. F. (1965). Observations sur Feaella mirabilis Ell. (Arachnide, Pseudoscorpion). Les chélicères et les pattes-mâchoires des nymphes et des adultes. Description de l’appareil reproducteur. Bulletin du Muséum National d’Histoire Naturelle, Ser. 2 37, 450–461.
Johnson, M. S., Hamilton, Z. R., Murphy, C. E., MacLeay, C. A., Roberts, B., and Kendrick, P. G. (2004). Evolutionary genetics of island and mainland species of Rhagada (Gastropoda: Pulmonata) in the Pilbara region, Western Australia. Australian Journal of Zoology 52, 341–355.
| Evolutionary genetics of island and mainland species of Rhagada (Gastropoda: Pulmonata) in the Pilbara region, Western Australia.Crossref | GoogleScholarGoogle Scholar |
Judson, M. L. I. (1992). African Chelonethi. Studies on the systematics, biogeography and natural history of African pseudoscorpions (Arachnida). (University of Leeds: Leeds, UK.)
Judson, M. L. I. (2007). A new and endangered species of the pseudoscorpion genus Lagynochthonius from a cave in Vietnam, with notes on chelal morphology and the composition of the Tyrannochthoniini (Arachnida, Chelonethi, Chthoniidae). Zootaxa 1627, 53–68.
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
| Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |
McHugh, A., Yablonsky, C., Binford, G., and Agnarsson, I. (2014). Molecular phylogenetics of Caribbean Micrathena (Araneae: Araneidae) suggests multiple colonisation events and single island endemism. Invertebrate Systematics 28, 337–349.
Morris, J. C. H. (1948). A new genus of pseudogarypin pseudoscorpions possessing pleural plates. Papers and Proceedings of the Royal Society of Tasmania 1947, 43–47.
Muchmore, W. B. (1981). Cavernicolous species of Larca, Archeolarca and Pseudogarypus with notes on the genera (Pseudoscorpionida, Garypidae and Pseudogarypidae). The Journal of Arachnology 9, 47–60.
Murienne, J., Harvey, M. S., and Giribet, G. (2008). First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata). Molecular Phylogenetics and Evolution 49, 170–184.
| First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOltrzP&md5=73a5a2490f7512ce9da2bdcc4a3de0deCAS | 18603009PubMed |
Nunn, G. B., Theisen, B. F., Christensen, B., and Arctander, P. (1996). Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. Journal of Molecular Evolution 42, 211–223.
| Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFSku7c%3D&md5=56070f041a0b7a2ec8f61c83c38d48a4CAS | 8919873PubMed |
Rix, M. G., Harvey, M. S., and Roberts, J. D. (2010). A revision of the textricellin spider genus Raveniella (Araneae: Araneoidea: Micropholcommatidae): exploring patterns of phylogeny and biogeography in an Australian biodiversity hotspot. Invertebrate Systematics 24, 209–237.
| A revision of the textricellin spider genus Raveniella (Araneae: Araneoidea: Micropholcommatidae): exploring patterns of phylogeny and biogeography in an Australian biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |
Schwendinger, P. J., and Giribet, G. (2005). The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae). Invertebrate Systematics 19, 297–323.
| The systematics of the south-east Asian genus Fangensis Rambla (Opiliones: Cyphophthalmi: Stylocellidae).Crossref | GoogleScholarGoogle Scholar |
Smith, G. B., Eberhard, S. M., Perina, G., and Finston, T. (2012). New species of short range endemic troglobitic silverfish (Zygentoma: Nicoletiidae) from subterranean habitats in Western Australia’s semi-arid Pilbara region. Records of the Western Australian Museum 27, 101–116.
Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
| RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=75f7f4dcbee031d89a4fac72e69aca2fCAS | 16928733PubMed |
Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
| Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKrs7%2FP&md5=e6aee5793349cd5b40115c3d6e045e10CAS | 17654362PubMed |
Volschenk, E. S., Burbidge, A. H., Durrant, B. J., and Harvey, M. S. (2010). Spatial distribution patterns of scorpions (Scorpiones) in the arid Pilbara region of Western Australia. Records of the Western Australian Museum 78, 271–283.
| Spatial distribution patterns of scorpions (Scorpiones) in the arid Pilbara region of Western Australia.Crossref | GoogleScholarGoogle Scholar |
Weygoldt, P. (1969). ‘The Biology of Pseudoscorpions.’ (Harvard University Press: Cambridge, MA.)
Whiting, M. F., Carpenter, J. M., Wheeler, Q. D., and Wheeler, W. C. (1997). The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology 46, 1–68.
| 1:STN:280:DC%2BD383js1yqtQ%3D%3D&md5=af54727bdce7b3d34e2f5139f255073eCAS | 11975347PubMed |
With, C. J. (1906). The Danish expedition to Siam 1899–1900. III. Chelonethi. An account of the Indian false-scorpions together with studies on the anatomy and classification of the order. Oversigt over det Konigelige Danske Videnskabernes Selskabs Forhandlinger, Ser. 7 3, 1–214.
With, C. J. (1908). Remarks on the Chelonethi. Videnskabelige Meddelelser fra den Naturhistorisk Forening i Kjøbenhavn, Ser. 6 10, 1–25.